Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-10-21T15:43:10Z
dc.date.available 2020-10-21T15:43:10Z
dc.date.issued 2019
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/107443
dc.description.abstract Background: Either under standard basal-bolus treatment or hybrid closed-loop control, subjects with type 1 diabetes are required to count carbohydrates (CHOs). However, CHO counting is not only burdensome but also prone to errors. Recently, an artificial pancreas algorithm that does not require premeal insulin boluses—the so-called automatic regulation of glucose (ARG)—was introduced. In its first pilot clinical study, although the exact CHO counting was not required, subjects still needed to announce the meal time and classify the meal size. Method: An automatic switching signal generator (SSG) is proposed in this work to remove the manual mealtime announcement from the control strategy. The SSG is based on a Kalman filter and works with continuous glucose monitoring readings only. Results: The ARG algorithm with unannounced meals (ARGum) was tested in silico under the effect of different types of mixed meals and intrapatient variability, and contrasted with the ARG algorithm with announced meals (ARGam). Simulations reveal that, for slow-absorbing meals, the time in the euglycemic range, [70-180] mg/dL, increases using the unannounced strategy (ARGam: 78.1 [68.6-80.2]% (median [IQR]) and ARGum: 87.8 [84.5-90.6]%), while similar results were found with fastabsorbing meals (ARGam: 87.4 [86.0-88.9]% and ARGum: 87.6 [86.1-88.8]%). On the other hand, when intrapatient variability is considered, time in euglycemia is also comparable (ARGam: 81.4 [75.4-83.5]% and ARGum: 80.9 [77.0-85.1]%). Conclusion: In silico results indicate that it is feasible to perform an in vivo evaluation of the ARG algorithm with unannounced meals. en
dc.format.extent 1035-1043 es
dc.language en es
dc.subject artificial pancreas es
dc.subject carbohydrate counting es
dc.subject sliding mode control es
dc.subject switched control es
dc.title Artificial Pancreas: Evaluating the ARG Algorithm Without Meal Announcement en
dc.type Articulo es
sedici.identifier.uri http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC6835180&blobtype=pdf es
sedici.identifier.other pmid:31339059 es
sedici.identifier.other pmcid:PMC6835180 es
sedici.identifier.other doi:10.1177/1932296819864585 es
sedici.identifier.issn 1932-2968 es
sedici.creator.person Fushimi, Emilia es
sedici.creator.person Colmegna, Patricio Hernán es
sedici.creator.person De Battista, Hernán es
sedici.creator.person Garelli, Fabricio es
sedici.creator.person Sánchez Peña, Ricardo Salvador es
sedici.subject.materias Ingeniería Electrónica es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales es
mods.originInfo.place Consejo Nacional de Investigaciones Científicas y Técnicas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Journal of Diabetes Science and Technology es
sedici.relation.journalVolumeAndIssue vol. 13, no. 6 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)