Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-10-28T14:10:11Z
dc.date.available 2020-10-28T14:10:11Z
dc.date.issued 2018
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/107848
dc.description.abstract Background: The Smith-Waterman (SW) algorithm is the best choice for searching similar regions between two DNA or protein sequences. However, it may become impracticable in some contexts due to its high computational demands. Consequently, the computer science community has focused on the use of modern parallel architectures such as Graphics Processing Units (GPUs), Xeon Phi accelerators and Field Programmable Gate Arrays (FGPAs) to speed up large-scale workloads. Results: This paper presents and evaluates SWIFOLD: a Smith-Waterman parallel Implementation on FPGA with OpenCL for Long DNA sequences. First, we evaluate its performance and resource usage for different kernel configurations. Next, we carry out a performance comparison between our tool and other state-of-the-art implementations considering three different datasets. SWIFOLD offers the best average performance for small and medium test sets, achieving a performance that is independent of input size and sequence similarity. In addition, SWIFOLD provides competitive performance rates in comparison with GPU-based implementations on the latest GPU generation for the large dataset. Conclusions: The results suggest that SWIFOLD can be a serious contender for accelerating the SW alignment of DNA sequences of unrestricted size in an affordable way reaching on average 125 GCUPS and almost a peak of 270 GCUPS. en
dc.language en es
dc.subject DNA es
dc.subject Smith-Waterman es
dc.subject OpenCL es
dc.subject High-performance computing es
dc.subject FPGA es
dc.title SWIFOLD: Smith-Waterman implementation on FPGA with OpenCL for long DNA sequences en
dc.type Articulo es
sedici.identifier.uri http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC6245597&blobtype=pdf es
sedici.identifier.other pmid:30458766 es
sedici.identifier.other pmcid:PMC6245597 es
sedici.identifier.other https://doi.org/10.1186/s12918-018-0614-6 es
sedici.identifier.issn 1752-0509 es
sedici.creator.person Rucci, Enzo es
sedici.creator.person Garcia, Carlos es
sedici.creator.person Botella, Guillermo es
sedici.creator.person De Giusti, Armando Eduardo es
sedici.creator.person Naiouf, Marcelo es
sedici.creator.person Prieto-Matias, Manuel es
sedici.subject.materias Ciencias Informáticas es
sedici.subject.materias Biología es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Investigación en Informática es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle BMC Systems Biology es
sedici.relation.journalVolumeAndIssue vol. 12, suplemento 5 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)