Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-11-02T18:26:05Z
dc.date.available 2020-11-02T18:26:05Z
dc.date.issued 2019
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/108120
dc.description.abstract Distress is a critical problem in developed societies given its long-term negative effects on physical and mental health. The interest in studying this emotion has notably increased during last years, being electroencephalography (EEG) signals preferred over other physiological variables in this research field. In addition, the non-stationary nature of brain dynamics has impulsed the use of non-linear metrics, such as symbolic entropies in brain signal analysis. Thus, the influence of time-lag on brain patterns assessment has not been tested. Hence, in the present study two permutation entropies denominated Delayed Permutation Entropy and Permutation Min-Entropy have been computed for the first time at different time-lags to discern between emotional states of calmness and distress from EEG signals. Moreover, a number of curve-related features were also calculated to assess brain dynamics across different temporal intervals. Complementary information among these variables was studied through sequential forward selection and 10-fold cross-validation approaches. According to the results obtained, the multi-lag entropy analysis has been able to reveal new significant insights so far undiscovered, thus notably improving the process of distress recognition from EEG recordings. en
dc.language en es
dc.subject electroencephalography es
dc.subject distress es
dc.subject non-linear metrics es
dc.subject delayed permutation entropy es
dc.subject permutation min-entropy es
dc.title Multi-Lag Analysis of Symbolic Entropies on EEG Recordings for Distress Recognition en
dc.type Articulo es
sedici.identifier.uri http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC6558149&blobtype=pdf es
sedici.identifier.other pmid:31214006 es
sedici.identifier.other pmcid:PMC6558149 es
sedici.identifier.other doi:10.3389/fninf.2019.00040 es
sedici.identifier.issn 1662-5196 es
sedici.creator.person Martínez Rodrigo, Arturo es
sedici.creator.person García Martínez, Beatriz es
sedici.creator.person Zunino, Luciano José es
sedici.creator.person Alcaraz, Raúl es
sedici.creator.person Fernández Caballero, Antonio es
sedici.subject.materias Física es
sedici.description.fulltext true es
mods.originInfo.place Centro de Investigaciones Ópticas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Frontiers in Neuroinformatics es
sedici.relation.journalVolumeAndIssue vol. 13 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)