Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-11-04T23:32:01Z
dc.date.available 2020-11-04T23:32:01Z
dc.date.issued 2016
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/108337
dc.description.abstract The aim of this work was to develop predictive structure-property relationships (QSPR) of natural and synthetic sweeteners in order to predict and model relative sweetness (RS). The data set was composed of 233 sweeteners collected from diverse sources in the literature, which was divided into training (163) and test (70) molecules according to a procedure based on k-means cluster analysis. A total of 3763 non-conformational Dragon molecular descriptors were calculated which were simultaneously analyzed through multivariable linear regression analysis coupled with the replacement method variable subset selection technique. The established six-parameter model was validated through the cross-validation techniques, together with Y-randomization and applicability domain analysis. The results for the training set and the test set showed that the non-conformational descriptors offer relevant information for modeling the RS of a compound. Thus, this model can be used to predict the sweetness of both un-evaluated and un-synthesized sweeteners. en
dc.format.extent 78-93 es
dc.language en es
dc.subject Dragon Software es
dc.subject k-Means Cluster Analysis es
dc.subject QSPR Theory es
dc.subject Relative Sweetness es
dc.subject Replacement Method es
dc.subject Sweeteners es
dc.title A New QSPR Study on Relative Sweetness en
dc.type Articulo es
sedici.identifier.other http://dx.doi.org/10.4018/ijqspr.2016010104 es
sedici.identifier.issn 2379-7479 es
sedici.creator.person Rojas Villa, Cristian Xavier es
sedici.creator.person Tripaldi, Piercosimo es
sedici.creator.person Duchowicz, Pablo Román es
sedici.subject.materias Ciencias Exactas es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle International Journal of Quantitative Structure-Property Relationships es
sedici.relation.journalVolumeAndIssue vol. 1, no. 1 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)