Busque entre los 168474 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2020-11-17T16:47:10Z | |
dc.date.available | 2020-11-17T16:47:10Z | |
dc.date.issued | 2017 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/109306 | |
dc.description.abstract | Magnetic hyperthermia, a modality that uses radio frequency heating assisted with single-domain magnetic nanoparticles, is becoming established as a powerful oncological therapy. Much improvement in nanomaterials development, to enhance their heating efficiency by tuning the magnetic colloidal properties, has been achieved. However, methodological standardization to accurately and univocally determine the colloidal properties required to numerically reproduce a specific heating efficiency using analytical expressions still holds. Thus, anticipating the hyperthermic performances of magnetic colloids entails high complexity due to polydispersity, aggregation and dipolar interactions always present in real materials to a greater or lesser degree. Here, by numerically simulating the experimental results and using real biomedical aqueous colloids, we analyse and compare several approaches to reproduce experimental specific absorption rate values. Then, we show that the relaxation time, determined using a representative mean activation energy consistently derived from four independent experiments accurately reproduces experimental heating efficiencies. Moreover, the so-derived relaxation time can be used to extrapolate the heating performance of the magnetic nanoparticles to the other field conditions within the framework of the linear response theory. We thus present a practical tool that may truly aid the design of medical decisions. | en |
dc.format.extent | 7176-7187 | es |
dc.language | en | es |
dc.subject | hyperthermic performances | es |
dc.subject | magnetic colloids | es |
dc.subject | oncological therapy | es |
dc.title | Anticipating hyperthermic efficiency of magnetic colloids using a semi-empirical model: a tool to help medical decisions | en |
dc.type | Articulo | es |
sedici.identifier.uri | https://pubs.rsc.org/en/content/articlelanding/2017/CP/C6CP08059F | es |
sedici.identifier.other | https://doi.org/10.1039/C6CP08059F | es |
sedici.identifier.issn | 1463-9084 | es |
sedici.creator.person | Fernández van Raap, Marcela Beatriz | es |
sedici.creator.person | Coral Coral, Diego Fernando | es |
sedici.creator.person | Yu, S. | es |
sedici.creator.person | Muñoz Medina, Guillermo Arturo | es |
sedici.creator.person | Sánchez, Francisco Homero | es |
sedici.creator.person | Roig, A. | es |
sedici.subject.materias | Ciencias Exactas | es |
sedici.subject.materias | Física | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Facultad de Ciencias Exactas | es |
mods.originInfo.place | Instituto de Física La Plata | es |
sedici.subtype | Articulo | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.description.peerReview | peer-review | es |
sedici.relation.journalTitle | Physical Chemistry Chemical Physics | es |
sedici.relation.journalVolumeAndIssue | vol. 19, no. 10 | es |