Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-11-17T16:47:10Z
dc.date.available 2020-11-17T16:47:10Z
dc.date.issued 2017
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/109306
dc.description.abstract Magnetic hyperthermia, a modality that uses radio frequency heating assisted with single-domain magnetic nanoparticles, is becoming established as a powerful oncological therapy. Much improvement in nanomaterials development, to enhance their heating efficiency by tuning the magnetic colloidal properties, has been achieved. However, methodological standardization to accurately and univocally determine the colloidal properties required to numerically reproduce a specific heating efficiency using analytical expressions still holds. Thus, anticipating the hyperthermic performances of magnetic colloids entails high complexity due to polydispersity, aggregation and dipolar interactions always present in real materials to a greater or lesser degree. Here, by numerically simulating the experimental results and using real biomedical aqueous colloids, we analyse and compare several approaches to reproduce experimental specific absorption rate values. Then, we show that the relaxation time, determined using a representative mean activation energy consistently derived from four independent experiments accurately reproduces experimental heating efficiencies. Moreover, the so-derived relaxation time can be used to extrapolate the heating performance of the magnetic nanoparticles to the other field conditions within the framework of the linear response theory. We thus present a practical tool that may truly aid the design of medical decisions. en
dc.format.extent 7176-7187 es
dc.language en es
dc.subject hyperthermic performances es
dc.subject magnetic colloids es
dc.subject oncological therapy es
dc.title Anticipating hyperthermic efficiency of magnetic colloids using a semi-empirical model: a tool to help medical decisions en
dc.type Articulo es
sedici.identifier.uri https://pubs.rsc.org/en/content/articlelanding/2017/CP/C6CP08059F es
sedici.identifier.other https://doi.org/10.1039/C6CP08059F es
sedici.identifier.issn 1463-9084 es
sedici.creator.person Fernández van Raap, Marcela Beatriz es
sedici.creator.person Coral Coral, Diego Fernando es
sedici.creator.person Yu, S. es
sedici.creator.person Muñoz Medina, Guillermo Arturo es
sedici.creator.person Sánchez, Francisco Homero es
sedici.creator.person Roig, A. es
sedici.subject.materias Ciencias Exactas es
sedici.subject.materias Física es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
mods.originInfo.place Instituto de Física La Plata es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Physical Chemistry Chemical Physics es
sedici.relation.journalVolumeAndIssue vol. 19, no. 10 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)