Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-02-25T14:04:07Z
dc.date.available 2021-02-25T14:04:07Z
dc.date.issued 2003
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/113446
dc.description.abstract We analyze the dynamic quality of the R–R interbeat intervals of electrocardiographic signals from healthy people and from patients with premature ventricular contractions (PVCs) by applying different measure algorithms to standardised public domain data sets of heart rate variability. Our aim is to assess the utility of these algorithms for the above mentioned purposes. Long and short time series, 24 and 0.50 h respectively, of interbeat intervals of healthy and PVC subjects were compared with the aim of developing a fast method to investigate their temporal organization. Two different methods were used: power spectral analysis and the integral correlation method. Power spectral analysis has proven to be a powerful tool for detecting long-range correlations. If it is applied in a short time series, power spectra of healthy and PVC subjects show a similar behavior, which disqualifies power spectral analysis as a fast method to distinguish healthy from PVC subjects. The integral correlation method allows us to study the fractal properties of interbeat intervals of electrocardiographic signals. The cardiac activity of healthy and PVC people stems from dynamics of chaotic nature characterized by correlation dimensions df equal to 3:40 ± 0:50 and 5:00 ± 0:80 for healthy and PVC subjects respectively. The methodology presented in this article bridges the gap between theoretical and experimental studies of non-linear phenomena. From our results we conclude that the minimum number of coupled differential equations to describe cardiac activity must be six and seven for healthy and PVC individuals respectively. From the present analysis we conclude that the correlation integral method is particularly suitable, in comparison with the power spectral analysis, for the early detection of arrhythmias on short time (0.5 h) series. es
dc.format.extent 699-708 es
dc.language en es
dc.subject Cardiología es
dc.title Non-linear properties of R–R distributions as a measure of heart rate variability en
dc.type Articulo es
sedici.identifier.other https://doi.org/10.1016/S0960-0779(02)00403-4 es
sedici.identifier.issn 0960-0779 es
sedici.creator.person Irurzun, Isabel María es
sedici.creator.person Bergero, Paula Elena es
sedici.creator.person Cordero, María Cristina es
sedici.creator.person Defeo, M. M. es
sedici.creator.person Vicente, José Luis es
sedici.creator.person Mola, Eduardo Elías es
sedici.subject.materias Química es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas es
mods.originInfo.place Universidad de Buenos Aires es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Chaos, Solitons & Fractals es
sedici.relation.journalVolumeAndIssue vol. 16, no. 5 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)