Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-03-19T15:28:42Z
dc.date.available 2021-03-19T15:28:42Z
dc.date.issued 2020
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/115419
dc.description.abstract Estimating maize (Zea mays L.) yields at the field level is of great interest to farmers, service dealers, and policy-makers. The main objectives of this study were to: i) provide guidelines on data selection for building yield forecasting models using Sentinel-2 imagery; ii) compare different statistical techniques and vegetation indices (VIs) during model building; and iii) perform spatial and temporal validation to see if empirical models could be applied to other regions or when models' coefficients should be updated. Data analysis was divided into four steps: i) data acquisition and preparation; ii) selection of training data; iii) building of forecasting models; and iv) spatial and temporal validation. Analysis was performed using yield data collected from 19 maize fields located in Brazil (2016 and 2017) and in the United States (2016), and normalized vegetation indices (NDVI, green NDVI and red edge NDVI) derived from Sentinel-2. Main outcomes from this study were: i) data selection impacted yield forecast model and fields with narrow yield variability and/or with skewed data distribution should be avoided; ii) models considering spatial correlation of residuals outperformed Ordinary least squares (OLS) regression; iii) red edge NDVI was most frequently retained into the model compared with the other VIs; and iv) model prediction power was more sensitive to yield data frequency distribution than to the geographical distance or years. Thus, this study provided guidelines to build more accurate maize yield forecasting models, but also established limitations for up-scaling, from farm-level to county, district, and state-scales. en
dc.language en es
dc.subject Yield forecasting models es
dc.subject Maize es
dc.subject Satellite imagery es
dc.subject Yield maps es
dc.subject Model validation es
dc.subject Sentinel-2 es
dc.title Forecasting maize yield at field scale based on high-resolution satellite imagery en
dc.type Objeto de conferencia es
sedici.identifier.issn 2525-0949 es
sedici.creator.person Schwalbert, Rai A. es
sedici.creator.person Amado, Telmo J.C. es
sedici.creator.person Nieto, Luciana es
sedici.creator.person Varela, Sebastián es
sedici.creator.person Corassa, Geomar M. es
sedici.creator.person Horbe, Tiago A.N. es
sedici.creator.person Rice, Charles W. es
sedici.creator.person Peralta, Nahuel R. es
sedici.creator.person Ciampitti, Ignacio A. es
sedici.description.note Publicado originalmente en: Rai A. Schwalbert, Telmo J.C. Amado, Luciana Nieto, Sebastian Varela, Geomar M. Corassa, Tiago A.N. Horbe, Charles W. Rice, Nahuel R. Peralta, Ignacio A. Ciampitti. Forecasting maize yield at field scale based on high-resolution satellite imagery. Biosystem Engineering. 171: 179–192 DOI: https://doi.org/10.1016/j.biosystemseng.2018.04.020 es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Resumen es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/
sedici.date.exposure 2020-10
sedici.relation.event XII Congreso de AgroInformática (CAI 2020) - JAIIO 49 (Modalidad virtual) es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith https://doi.org/10.1016/j.biosystemseng.2018.04.020 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)