Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-03-22T14:00:07Z
dc.date.available 2021-03-22T14:00:07Z
dc.date.issued 2020
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/115530
dc.description.abstract Accurately determining crop growth progress and crop yields at field-scale can help farmers estimate their net profit, enable insurance companies to ascertain payouts, and help in ensuring food security. At field scales, the troika of management, soil and weather combine to impact crop growth progress, and this progress can be monitored in-season using satellite data. Here, we use satellite derived metrics, from both optical and radar satellites, and machine learning models to model field-scale crop yields for over 3,000 Soybean and Wheat in Argentina. We compare several machine learning models and our results show the promise of combining mixed effect models with non-parametric models in improving yield modeling capabilities. We also demonstrate the utility of specific satellite derived metrics and extracted features in improving model performance and show that our approach can explain greater than 70% of the variation in yields while remaining generalizable across crops and agro-ecological zones. en
dc.format.extent 238-241 es
dc.language en es
dc.subject Crop Yield Forecasting es
dc.subject Machine Learning es
dc.subject Mixed Effect Models es
dc.title Using Machine-Learning Models for Field-Scale Crop Yield and Condition Modeling in Argentina en
dc.type Objeto de conferencia es
sedici.identifier.issn 2525-0949 es
sedici.creator.person Sahajpal, Ritvik es
sedici.creator.person Fontana, Lucas es
sedici.creator.person Lafluf, Pedro es
sedici.creator.person Leale, Guillermo es
sedici.creator.person Puricelli, Estefania es
sedici.creator.person O’Neill, Dan es
sedici.creator.person Hosseini, Mehdi es
sedici.creator.person Varela, Mauricio es
sedici.creator.person Reshef, Inbal es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/
sedici.date.exposure 2020-10
sedici.relation.event XII Congreso de AgroInformática (CAI 2020) - JAIIO 49 (Modalidad virtual) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)