Busque entre los 168506 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2021-03-26T13:46:20Z | |
dc.date.available | 2021-03-26T13:46:20Z | |
dc.date.issued | 2020 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/115892 | |
dc.description.abstract | El área de reconocimiento de imágenes ha cobrado considerable interés en los últimos años. Este trabajo explora arquitectura de redes neuronales para conseguir un modelo capaz de reconocer un conjunto variado de 30 especies de animales en su hábitat natural. Para cumplir el objetivo, se utilizaron técnicas de Transfer Learning y Fine Tuning para adaptar redes neuronales ampliamente usadas que han demostrado ser eficaces y eficientes, tales como VGG-16, ResNet50 e InceptionV3. Previamente, se procesaron las imágenes de un dataset, reduciendo su tamaño y extrayendo la región de interés. Asimismo, se implementaron técnicas para evitar el overfitting como data augmentation, early stopping, decay, reduceLROnPlateau y oversampling. Los resultados obtenidos fueron satisfactorios, tanto en métricas de error y precisión, como en F1-Score y ROC-AUC, alcanzando valores muy cercanos a 1. Una vez alcanzados estos resultados se realizó un análisis para comprender los puntos débiles de los modelos obtenidos, utilizando t-SNE y matrices de confusión. Como conclusión, los principales errores se encuentran entre especies de animales muy similares en formas, tamaños, hábitat, colores y texturas que incluso para un humano sería difícil diferenciar. | es |
dc.format.extent | 137-146 | es |
dc.language | es | es |
dc.subject | Deep Learning | es |
dc.subject | Redes neuronales convolucionales | es |
dc.subject | Transfer learning | es |
dc.subject | T-SNE | es |
dc.subject | Hiperparámetros | es |
dc.title | Clasificador multiclase con redes neuronales convolucionales | es |
dc.type | Objeto de conferencia | es |
sedici.identifier.uri | http://49jaiio.sadio.org.ar/pdfs/est/EST-09.pdf | es |
sedici.identifier.issn | 2451-7615 | es |
sedici.creator.person | Lorenzo, M. | es |
sedici.creator.person | Iarussi, F. | es |
sedici.creator.person | Cifuentes, V. | es |
sedici.creator.person | Rodriguez, G. | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Sociedad Argentina de Informática e Investigación Operativa | es |
sedici.subtype | Objeto de conferencia | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/ | |
sedici.date.exposure | 2020-10 | |
sedici.relation.event | XXIII Concurso de Trabajos Estudiantiles (EST 2020) - JAIIO 49 (Modalidad virtual) | es |
sedici.description.peerReview | peer-review | es |