Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-04-07T13:16:28Z
dc.date.available 2021-04-07T13:16:28Z
dc.date.issued 2020
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/116415
dc.description.abstract We propose a new method for detecting adversarial examples based on a stochastic approach. An example is presented to the network several times and classified as adversarial if the fraction of times the output label is different from the label generated by the deterministic network is above some threshold value. We analyze the performance of the method for three attack methods (DeepFool, Fast Gradient Sign Method and norm 2 Carlini Wagner) and two datasets (MNIST and CIFAR-10). We find that our approach works best for stronger attacks such as DeepFool and CW2, and could be used as part of a scheme where several methods are applied simultaneously in order to estimate if a given input is adversarial or not. en
dc.format.extent 25-38 es
dc.language en es
dc.subject Adversarial examples es
dc.subject Method for detecting es
dc.title Noise Based Approach for the Detection of Adversarial Examples en
dc.type Objeto de conferencia es
sedici.identifier.uri http://49jaiio.sadio.org.ar/pdfs/agranda/AGRANDA-04.pdf es
sedici.identifier.issn 2683-8966 es
sedici.creator.person Kloster, Matias Alejandro es
sedici.creator.person Cúñale, Ariel Hernán es
sedici.creator.person Mato, Germán es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/
sedici.date.exposure 2020-10
sedici.relation.event VI Simposio Argentino de Ciencia de Datos y GRANdes DAtos (AGRANDA 2020) - JAIIO 49 (Modalidad virtual) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)