Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-04-07T13:51:13Z
dc.date.available 2021-04-07T13:51:13Z
dc.date.issued 2020
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/116426
dc.description.abstract A statistical comparison of feature selection methods is performed. Feature selection is an important issue in Data Mining and Data Science, and a comparison of the results obtained from different methods is hard to be performed. Then, the evaluation of metrics and ways of comparisons is an important matter of study. Our study is performed on a real dataset previously analyzed in the literature containing a small number of records, drawing the attention on the conclusions to be applied where poor statistical confidence levels of significance can be obtained because of a relative low number of samples are present. The use of inter rater agreement coefficients is introduced as a novel approach extending a previous study. Boruta and tree-based methodologies perform rather well even in small data as it is shown. Our metrics can be used to guide the expert opinion in order to take the final decision. This work extends the results obtained in a previous analysis performed on the mentioned dataset. en
dc.format.extent 15-27 es
dc.language en es
dc.subject Big data es
dc.subject Feature selection es
dc.subject Wrapper es
dc.subject Filtered es
dc.subject Lasso es
dc.subject Expert role es
dc.title On the statistical comparison of feature selection methods and the role of experts: the case of Las Vegas strip en
dc.type Objeto de conferencia es
sedici.identifier.uri http://49jaiio.sadio.org.ar/pdfs/asai/ASAI-02.pdf es
sedici.identifier.issn 2451-7585 es
sedici.creator.person Barraza, Néstor Rubén es
sedici.creator.person Moreno, Antonio A. es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/
sedici.date.exposure 2020-10
sedici.relation.event XXI Simposio Argentino de Inteligencia Artificial (ASAI 2020) - JAIIO 49 (Modalidad virtual) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)