Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-06-03T18:30:11Z
dc.date.available 2021-06-03T18:30:11Z
dc.date.issued 2020
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/119733
dc.description.abstract Complex behavior poses challenges in extracting models from experiment. An example is spin liquid formation in frustrated magnets like Dy2Ti2O7. Understanding has been hindered by issues including disorder, glass formation, and interpretation of scattering data. Here, we use an automated capability to extract model Hamiltonians from data, and to identify different magnetic regimes. This involves training an autoencoder to learn a compressed representation of three-dimensional diffuse scattering, over a wide range of spin Hamiltonians. The autoencoder finds optimal matches according to scattering and heat capacity data and provides confidence intervals. Validation tests indicate that our optimal Hamiltonian accurately predicts temperature and field dependence of both magnetic structure and magnetization, as well as glass formation and irreversibility in Dy2Ti2O7. The autoencoder can also categorize different magnetic behaviors and eliminate background noise and artifacts in raw data. Our methodology is readily applicable to other materials and types of scattering problems. en
dc.language en es
dc.subject Model Hamiltonians es
dc.subject Autoencoder es
dc.title Machine-learning-assisted insight into spin ice Dy2Ti2O7 en
dc.type Articulo es
sedici.identifier.other https://doi.org/10.1038/s41467-020-14660-y es
sedici.identifier.issn 2041-1723 es
sedici.creator.person Samarakoon, Anjana M. es
sedici.creator.person Barros, Kipton es
sedici.creator.person Li, Ying Wai es
sedici.creator.person Eisenbach, Markus es
sedici.creator.person Zhang, Qiang es
sedici.creator.person Ye, Feng es
sedici.creator.person Sharma, V. es
sedici.creator.person Dun, Z. L. es
sedici.creator.person Zhou, Haidong es
sedici.creator.person Grigera, Santiago Andrés es
sedici.creator.person Batista, Cristian D. es
sedici.creator.person Tennant, D. Alan es
sedici.subject.materias Física es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Física de Líquidos y Sistemas Biológicos es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Nature Communications es
sedici.relation.journalVolumeAndIssue vol. 11 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)