Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-06-08T14:05:32Z
dc.date.available 2021-06-08T14:05:32Z
dc.date.issued 2021
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/119895
dc.description.abstract La comunidad científica ha encontrado en el uso de los recursos tecnológicos disponibles una aliada para abordar problemas de gran complejidad e identificados como irresolubles. Tales problemas han sido abordados con técnicas exactas o heurísticas para lograr su resolución, o al menos conseguir soluciones de alta calidad, cuando los mismos se clasifican como NP-duros. Inicialmente, los problemas se planteaban en entornos estáticos, pero en los últimos años se les trata de resolver reproduciendo las características dinámicas y de alta dimensionalidad que los alteran. La optimización de estos problemas, conocida como Big Data Optimization, se puede realizar diseñando algoritmos metaheurísticos secuenciales y distribuidos (solvers) bajo frameworks de programación de alto nivel como los que incorporan el paradigma MapReduce para el manejo de Big Data. Dichos solvers, en principio, serán diseñados y testeados con problemas académicos, con el objetivo de analizar el comportamiento en cuanto a eficiencia y escalabilidad. En consecuencia, nuestro objetivo central es adaptar estos solvers para abordar problemas de interés en contextos reales (científico, industrial, entre otros) donde estamos trabajando, y puntualmente en problemas de planificación y de diseño de redes de distribución de agua y de sensores en plantas industriales. es
dc.format.extent 87-91 es
dc.language es es
dc.subject Big Data es
dc.subject Optimización es
dc.subject Algoritmos metaheurísticos es
dc.subject Solvers es
dc.title Big Data Optimization con algoritmos metaheurísticos utilizando frameworks de computación distribuida es
dc.type Objeto de conferencia es
sedici.identifier.isbn 978-987-24611-3-3 es
sedici.identifier.isbn 978-987-24611-4-0 es
sedici.creator.person Salto, Carolina es
sedici.creator.person Minetti, Gabriela F. es
sedici.creator.person Alfonso, Hugo es
sedici.creator.person Bermúdez, Carlos es
sedici.creator.person Vargas, Javier es
sedici.creator.person Morero, Franco es
sedici.description.note Eje: Agentes y sistemas inteligentes. es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2021-04
sedici.relation.event XXIII Workshop de Investigadores en Ciencias de la Computación (WICC 2021, Chilecito, La Rioja) es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/119487 es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/119490 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)