Search among the 160581 resources available in the repository
dc.date.accessioned | 2021-06-09T13:45:07Z | |
dc.date.available | 2021-06-09T13:45:07Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/119966 | |
dc.description.abstract | La optimización de carteras de inversión representa un desafío para el inversor al momento de seleccionar la combinación correcta de acciones a efectos de maximizar los retornos esperados y minimizar los riesgos. Es así que en contraste con el paradigma de la computación tradicional, la computación cuántica no sólo acelera de manera sustancial el proceso de las computadoras tradicionales si no que optimiza la performance del método que determina cuáles acciones deben ser incluidas en las carteras de inversión y cuáles no. En este trabajo presentamos un estudio de comparación y referencia entre el resultado obtenido por tres diferentes metodologías de optimización de cartera: a) aproximación clásica, b) aproximación cuántica, c) un híbrido entre la aproximación cuántica incorporando criterios de Inteligencia Artificial. Para el primero de los casos utilizamos el modelo de Markowitz, el cual es un algoritmo clásico para determinar carteras eficientes, para nuestra aproximación cuántica hemos trabajado con un algoritmo de optimización cuántico llamado Variational Quantum Eigensolver (VQE) y por último hemos intentado mejorar este último criterio de optimización con un índice de sentimiento calculado con procesamiento de lenguaje natural (NLP) y una métrica de forecasting multivariado basado en Machine Learning. | es |
dc.format.extent | 139-143 | es |
dc.language | es | es |
dc.subject | Computación Cuántica | es |
dc.subject | Procesamiento de Lenguaje Natural Cuántico | es |
dc.subject | Optimización de Cartera de Inversión | es |
dc.subject | Finanzas | es |
dc.subject | Machine learning | es |
dc.subject | AI | es |
dc.title | Optimización de carteras de inversión: un benchmark con modelos clásico, de computación cuántica y de hibridación AI /QC | es |
dc.type | Objeto de conferencia | es |
sedici.identifier.isbn | 978-987-24611-3-3 | es |
sedici.identifier.isbn | 978-987-24611-4-0 | es |
sedici.creator.person | Braña, Juan Pablo | es |
sedici.creator.person | Litterio, Alejandra | es |
sedici.creator.person | Fernández, Alejandro | es |
sedici.description.note | Eje: Agentes y sistemas inteligentes. | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Red de Universidades con Carreras en Informática | es |
sedici.subtype | Objeto de conferencia | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.date.exposure | 2021-04 | |
sedici.relation.event | XXIII Workshop de Investigadores en Ciencias de la Computación (WICC 2021, Chilecito, La Rioja) | es |
sedici.description.peerReview | peer-review | es |
sedici.relation.isRelatedWith | http://sedici.unlp.edu.ar/handle/10915/119487 | es |
sedici.relation.isRelatedWith | http://sedici.unlp.edu.ar/handle/10915/119490 | es |