Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-06-22T14:49:04Z
dc.date.available 2021-06-22T14:49:04Z
dc.date.issued 2021
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/120580
dc.description.abstract La presente tesis doctoral aborda la problemática de la incertidumbre existente en todo sistema de predicción, focalizando en el desarrollo de métodos de reducción de incertidumbre aplicados a la predicción de fenómenos naturales. Debido a que estos fenómenos suelen causar gran impacto en las comunidades, la flora y la fauna, el ecosistema, entre otros, los sistemas de predicción deben proporcionar respuesta en el menor tiempo posible. Por estos motivos, los métodos propuestos han sido desarrollados utilizando capacidades de alto rendimiento. El primer método desarrollado en esta tesis (ESS-IM), comenzó con el objetivo de lograr una mejora a una metodología previamente desarrollada denominada ESS (Sistema Estadístico Evolutivo). Específicamente se trabajó en el incremento del paralelismo de la metaheurística interna, incorporando una arquitectura basada en modelo de islas bajo un esquema de migración. Este desarrollo logró incrementar la capacidad de búsqueda de la metaheurística interna, impactando de forma directa en un incremento en la calidad de predicción del método. En la validación, ESS-IM fue aplicado en una serie de casos de quemas controladas e incendios forestales. Es importante destacar que, en forma conjunta al desarrollo de la tesis, se llevaron a cabo diferentes investigaciones complementarias, tales como: estudios de sintonización de parámetros, desarrollo de un sistema de generación de mapas de incendios forestales a partir de imágenes satelitales, diseño de una red inalámbrica de sensores como sistema de alerta temprana, entre otros. Finalmente, en la última etapa de la tesis, se implementó una versión híbrida basada en metaheurísticas evolutivas bajo una estrategia colaborativa basada en islas. El método HESS-IM, se implementó de forma heterogénea (a nivel de hardware), logrando que los resultados obtenidos incrementen la calidad de predicción y eficiencia del método. es
dc.format.extent 1040-1049 es
dc.language es es
dc.subject reducción de incertidumbre es
dc.subject paralelismo es
dc.subject computación de alto rendimiento es
dc.subject metaheurísticas evolutivas híbridas poblacionales es
dc.title Método de reducción de incertidumbre basado en algoritmos evolutivos y paralelismo orientado a la predicción y prevención de desastres naturales es
dc.type Objeto de conferencia es
sedici.identifier.isbn 978-987-24611-3-3 es
sedici.identifier.isbn 978-987-24611-4-0 es
sedici.title.subtitle Doctorado en Ciencias de la Computación, Facultad de Ciencias Físico Matemáticas y Naturales de la Universidad Nacional de San Luis es
sedici.creator.person Méndez Garabetti, Miguel es
sedici.description.note Eje: Tesis de Doctorado. es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2021-04
sedici.relation.event XXIII Workshop de Investigadores en Ciencias de la Computación (WICC 2021, Chilecito, La Rioja) es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/119487 es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/119490 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)