Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-08-25T15:38:37Z
dc.date.available 2021-08-25T15:38:37Z
dc.date.issued 2018-07-26
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/123376
dc.description.abstract We solve the problem of best approximation by Parseval frames to an arbitrary frame in a subspace of an infinite dimensional Hilbert space. We explicitly describe all the solutions and we give a criterion for uniqueness. Our proof relies on the geometric structure of the set of all Parseval frames quadratically close to a given frame. In the process we show that its connected components can be parametrized by using the notion of index of a pair of projections, and we prove existence and uniqueness results of best approximation by Parseval frames restricted to these connected components. en
dc.format.extent 1395-1423 es
dc.language en es
dc.subject Symmetric approximation es
dc.subject Frame es
dc.subject Hilbert space es
dc.subject Hilbert–Schmidt operator es
dc.subject Index of a pair of projections es
dc.subject Partial isometry es
dc.subject Löwdin orthogonalization es
dc.title Global Symmetric Approximation of Frames en
dc.type Articulo es
sedici.identifier.other doi:10.1007/s00041-018-9632-4 es
sedici.identifier.issn 1069-5869 es
sedici.identifier.issn 1531-5851 es
sedici.creator.person Chiumiento, Eduardo Hernán es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Centro de Investigación de Matemática es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Journal of Fourier Analysis and Applications es
sedici.relation.journalVolumeAndIssue vol. 25, no. 4 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)