Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-08-30T14:24:33Z
dc.date.available 2021-08-30T14:24:33Z
dc.date.issued 2012
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/123721
dc.description.abstract Linear feature extraction is commonly applied in an all-at-once way, meaning that a single trasformation is used for all the data regardless of the classes. Very good results can be achieved with this approach when the classification problem involves just a few classes. Nevertheless, when the number of classes grows is often difficult to find a low dimensional subspace while preserving the error rates, due to overlapping between the different populations. In this paper we propose an alternative method based on a collection of transformations, each involving two of the classes in the problem. Each transformation in the collection is estimated using an approximation to the information discriminant analysis, which is found to be equivalent to sufficient dimension reduction for heteroscedastic Gaussian data. A regularized version of the objective function is also introduced, allowing for simultaneous variable selection. In this way, each reduction implies only a subset of the original variables. A probabilistic model is build by means of a simple latent variable, so that classification is carried out using standard Bayes decision rule. Several real data sets are used to compare the performance of the proposed method against similar approaches based on ensembles of binary classifiers. es
dc.format.extent 48-58 es
dc.language en es
dc.subject Pairwise subspace projection method es
dc.subject Multi-class linear dimension reduction es
dc.title A pairwise subspace projection method for multi-class linear dimension reduction en
dc.type Objeto de conferencia es
sedici.identifier.uri https://41jaiio.sadio.org.ar/sites/default/files/5_ASAI_2012.pdf es
sedici.identifier.issn 1850-2784 es
sedici.creator.person Tomassi, Diego es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2012-08
sedici.relation.event XIII Argentine Symposium on Artificial Intelligence (ASAI 2012) (XLI JAIIO, La Plata, 27 y 28 de agosto de 2012) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)