Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-09-07T15:58:21Z
dc.date.available 2021-09-07T15:58:21Z
dc.date.issued 2018
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/124319
dc.description.abstract Most theories that predict time and/or space variation of fundamental constants also predict violations of the weak equivalence principle (WEP). In 2004 Khoury and Weltman proposed the so called chameleon field arguing that it could help avoiding experimental bounds on the WEP while having a nontrivial cosmological impact. In this paper we revisit the extent to which these expectations continue to hold as we enter the regime of high precision tests. The basis of the study is the development of a new method for computing the force between two massive bodies induced by the chameleon field which takes into account the influence on the field by both, the large and the test bodies. We confirm that in the thin shell regime the force does depend nontrivially on the test body's composition, even when the chameleon coupling constants βi=β are universal. We also propose a simple criterion based on energy minimization, that we use to determine which of the approximations used in computing the scalar field in a two body problem is better in each specific regime. As an application of our analysis we then compare the resulting differential acceleration of two test bodies with the corresponding bounds obtained from Eotvos type experiments. We consider two setups: (1) an Earth based experiment where the test bodies are made of Be and Al; (2) the Lunar Laser Ranging experiment. We find that for some choices of the free parameters of the chameleon model the predictions of the Eotvos parameter are larger than some of the previous estimates. As a consequence, we put new constrains on these free parameters. Our conclusions strongly suggest that the properties of immunity from experimental tests of the WEP, usually attributed to the chameleon and related models, should be carefully reconsidered. An important result of our analysis is that our approach leads to new constraints on the parameter space of the chameleon models. en
dc.language en es
dc.subject Scalar field es
dc.subject Space (mathematics) es
dc.subject Physics es
dc.subject Gravitation es
dc.subject Free parameter es
dc.subject Equivalence principle es
dc.subject Coupling constant es
dc.subject Field (physics) es
dc.subject Theoretical physics es
dc.subject Parameter space es
dc.title Equivalence principle in chameleon models en
dc.type Articulo es
sedici.identifier.other arXiv:1310.6051 es
sedici.identifier.other doi:10.1103/physrevd.97.104044 es
sedici.identifier.issn 2470-0010 es
sedici.identifier.issn 2470-0029 es
sedici.creator.person Kraiselburd, Lucila es
sedici.creator.person Landau, Susana Judith es
sedici.creator.person Salgado, Marcelo es
sedici.creator.person Sudarsky, D. es
sedici.creator.person Vucetich, Héctor es
sedici.subject.materias Física es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Astronómicas y Geofísicas es
sedici.subtype Preprint es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Physical Review D es
sedici.relation.journalVolumeAndIssue vol. 97, no. 10 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)