Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-09-15T19:51:55Z
dc.date.available 2021-09-15T19:51:55Z
dc.date.issued 2020
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/124906
dc.description.abstract Context. Recent high-resolution observations of protoplanetary disks have revealed ring-like structures that can be associated to pressure maxima. Pressure maxima are known to be dust collectors and planet migration traps. The great majority of planet formation studies are based either on the pebble accretion model or on the planetesimal accretion model. However, recent studies proposed hybrid accretion of pebbles and planetesimals as a possible formation mechanism for Jupiter. Aims. We aim to study the full process of planet formation consisting of dust evolution, planetesimal formation, and planet growth at a pressure maximum in a protoplanetary disk. Methods. We compute, through numerical simulations, the gas and dust evolution in a protoplanetary disk, including dust growth, fragmentation, radial drift, and particle accumulation at a pressure maximum. The pressure maximum appears due to an assumed viscosity transition at the water ice line. We also consider the formation of planetesimals by streaming instability and the formation of a moon-size embryo that grows into a giant planet by the hybrid accretion of pebbles and planetesimals, all within the pressure maximum. Results. We find that the pressure maximum is an efficient collector of dust drifting inwards. The condition of planetesimal formation by streaming instability is fulfilled due to the large amount of dust accumulated at the pressure bump. Subsequently, a massive core is quickly formed (in ~104 yr) by the accretion of pebbles. After the pebble isolation mass is reached, the growth of the core slowly continues by the accretion of planetesimals. The energy released by planetesimal accretion delays the onset of runaway gas accretion, allowing a gas giant to form after ~1 Myr of disk evolution. The pressure maximum also acts as a migration trap. Conclusions. Pressure maxima generated by a viscosity transition at the water ice line are preferential locations for dust traps, planetesimal formation by streaming instability, and planet migration traps. All these conditions allow the fast formation of a giant planet by the hybrid accretion of pebbles and planetesimals. en
dc.language en es
dc.subject Planets and satellites: formation es
dc.subject Planets and satellites: gaseous planets es
dc.subject Protoplanetary disks es
dc.title Giant planet formation at the pressure maxima of protoplanetary disks en
dc.type Articulo es
sedici.identifier.other arXiv:2005.10868 es
sedici.identifier.other doi:10.1051/0004-6361/202038458 es
sedici.identifier.issn 0004-6361 es
sedici.identifier.issn 1432-0746 es
sedici.title.subtitle II. A hybrid accretion scenario en
sedici.creator.person Guilera, Octavio Miguel es
sedici.creator.person Sándor, Zsolt es
sedici.creator.person Ronco, María Paula es
sedici.creator.person Venturini, Julia es
sedici.creator.person Miller Bertolami, Marcelo Miguel es
sedici.subject.materias Ciencias Astronómicas es
sedici.subject.materias Astronomía es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Astrofísica de La Plata es
sedici.subtype Preprint es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Astronomy & Astrophysics es
sedici.relation.journalVolumeAndIssue vol. 642 es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/87247 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)