Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-09-20T16:33:13Z
dc.date.available 2021-09-20T16:33:13Z
dc.date.issued 2021
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/125201
dc.description.abstract We apply unsupervised learning techniques to classify the different phases of the J₁-J₂ antiferromagnetic Ising model on the honeycomb lattice. We construct the phase diagram of the system using convolutional autoencoders. These neural networks can detect phase transitions in the system via "anomaly detection'' without the need for any label or a priori knowledge of the phases. We present different ways of training these autoencoders, and we evaluate them to discriminate between distinct magnetic phases. In this process, we highlight the case of high-temperature or even random training data. Finally, we analyze the capability of the autoencoder to detect the ground state degeneracy through the reconstruction error. en
dc.language en es
dc.subject Autoencoder es
dc.subject Physics es
dc.subject Statistical physics es
dc.subject Phase transition es
dc.subject Degeneracy (mathematics) es
dc.subject Lattice (group) es
dc.subject Artificial neural network es
dc.subject Ising model es
dc.subject Unsupervised learning es
dc.subject Phase diagram es
dc.title Phase diagram study of a two-dimensional frustrated antiferromagnet via unsupervised machine learning en
dc.type Articulo es
sedici.identifier.other arXiv:2101.10161 es
sedici.identifier.other doi:10.1103/physrevb.103.134422 es
sedici.identifier.issn 2469-9950 es
sedici.identifier.issn 2469-9969 es
sedici.creator.person Acevedo, Santiago Daniel es
sedici.creator.person Arlego, Marcelo José Fabián es
sedici.creator.person Lamas, Carlos Alberto es
sedici.subject.materias Física es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Física La Plata es
sedici.subtype Preprint es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Physical Review B es
sedici.relation.journalVolumeAndIssue vol. 103, no. 13 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)