Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-09-21T13:40:13Z
dc.date.available 2021-09-21T13:40:13Z
dc.date.issued 2011
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/125236
dc.description.abstract Multiclass problems are usually of high technological value, but many classification methods are binary in origin. In the last years, several improved solutions based on the combination of simple classifiers were introduced. An interesting solution is based on creating a hierarchy of sub-problems by clustering prototypes of each one of the classes; there- fore the solution is heavily influenced by the label’s information. In this work we analyze a new strategy to solve multiclass problems that makes more use of spatial information than other methods. We construct a hier- archy of subproblems, but opposite to previous developments, based only on spatial information and not using a single prototype for each class. We evaluate the use of different clustering methods (either agglomera- tive or divisive) for this task and also the use two different classifiers (linear SVM and FDA–GenRidge) for each sub-problem (if needed, be- cause in several cases the clustering method directly gives a subset with samples of a single class). We compare the new method with several pre- vious approaches, finding promising results. The good performance of our approach is virtually independent of the classifier coupled to it, which suggest that it success is primarily related to the use of an appropriate clustering strategy. es
dc.format.extent 36-47 es
dc.language es es
dc.subject UPM es
dc.subject Method for Multiclass Problems es
dc.title Extended evaluation of the UPM method for multiclass problems en
dc.type Objeto de conferencia es
sedici.identifier.issn 1850-2784 es
sedici.creator.person Ahumada, Hernán César es
sedici.creator.person Grinblat, Guillermo L. es
sedici.creator.person Granitto, Pablo Miguel es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2011-08
sedici.relation.event XII Argentine Symposium on Artificial Intelligence (ASAI 2011) (XL JAIIO, Córdoba, 29 y 30 de agosto de 2011) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)