Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-09-21T14:36:20Z
dc.date.available 2021-09-21T14:36:20Z
dc.date.issued 2011
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/125264
dc.description.abstract Feature selection is a useful machine learning technique aimed at reducing the dimensionality of the input space, discarding useless or redundant variables, in order to increase the performance and interpretability of models. The well-known Recursive Feature Elimination (RFE) algorithm provides good performance with moderate computational efforts, in particular for wide datasets. When using Support Vector Machines (SVM) for multiclass classification problems, the most typical strategy is to apply a simple One–Vs–One (OVO) strategy to produce a multiclass classifier starting from binary ones. In this work we introduce improved methods to produce the final ranking of features on multiclass problems with OVO–SVM, based on different combinations of the set of rankings produced by the diverse binary problems. We evaluated our new strategies using wide datasets from mass–spectrometry analysis and standard datasets from the UCI repository. In particular, we compared the new methods with the traditional average strategy. Our results suggest that one of our new methods outperforms the traditional scheme in most situations. en
dc.format.extent 192-201 es
dc.language en es
dc.subject Feature Selection es
dc.subject Multiclass Problems es
dc.title New strategies for OVO feature selection on multiclass problems es
dc.type Objeto de conferencia es
sedici.identifier.issn 1850-2784 es
sedici.creator.person Izetta, Javier es
sedici.creator.person Grinblat, Guillermo L. es
sedici.creator.person Granitto, Pablo Miguel es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2011-08
sedici.relation.event XII Argentine Symposium on Artificial Intelligence (ASAI 2011) (XL JAIIO, Córdoba, 29 y 30 de agosto de 2011) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)