Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-09-24T16:12:56Z
dc.date.available 2021-09-24T16:12:56Z
dc.date.issued 2020-12
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/125577
dc.description.abstract We study the motion of a classical particle subject to anisotropic harmonic forces and constrained to move on the SN-1 sphere. In the integrable-systems literature this problem is known as the Neumann model. We choose the spring constants in a way that makes the connection with the so-called p = 2 spherical disordered system transparent. We tackle the problem in the N → ∞ limit by introducing a soft version in which the spherical constraint is imposed only on average over initial conditions. We show that the Generalized Gibbs Ensemble, constructed with N conserved charges in involution, captures the long-time averages of all relevant observables of the soft model after sudden changes in the parameters (quenches). We reveal the full dynamic phase diagram with four different phases in which the particles' position and momentum are both extended, only the position quasi-condenses or condenses, and both condense. The scaling properties of the fluctuations allow us to establish in which of these cases the strict and soft spherical constraints are equivalent. We thus confirm the validity of the GGE hypothesis for the Neumann model on a large portion of the dynamic phase diagram. en
dc.language en es
dc.subject Physics es
dc.subject particles es
dc.subject anisotropic harmonic forces es
dc.subject Neumann model es
dc.subject Generalized Gibbs Ensemble es
dc.title (Non equilibrium) Thermodynamics of Integrable models: The Generalized Gibbs Ensemble description of the classical Neumann Model en
dc.type Articulo es
sedici.identifier.other arXiv:2007.14364 es
sedici.identifier.other doi:10.1209/0295-5075/132/50002 es
sedici.identifier.issn 1286-4854 es
sedici.identifier.issn 0295-5075 es
sedici.creator.person Barbier, Damien es
sedici.creator.person Cugliandolo, Leticia F. es
sedici.creator.person Lozano, Gustavo S. es
sedici.creator.person Nessi, Emilio Nicolás es
sedici.subject.materias Ciencias Exactas es
sedici.subject.materias Física es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
mods.originInfo.place Instituto de Física La Plata es
sedici.subtype Preprint es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle EPL es
sedici.relation.journalVolumeAndIssue vol. 132, no. 5 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)