Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-09-30T19:19:41Z
dc.date.available 2021-09-30T19:19:41Z
dc.date.issued 2011
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/126000
dc.description.abstract Los rendimientos de soja (Glycine max (L.) Merr.) son variables aún en pequeñas áreas. Los estudios observacionales, en campos en producción, permiten captar la variación de rendimiento tal como se presentan en la realidad, ya que esta es explicada por múltiples variables, principalmente edáficas y meteorológicas. El uso de algoritmos de clasificación y regresión (CART) posibilita el análisis de variaciones de rendimiento en función de variables explicatorias que pueden estar correlacionadas y aún relacionarse de modo no lineal con el rendimiento. Los algoritmos CART son métodos computacionalmente intensivos basado en particiones recursivas de casos en función de variables predictoras de una variable de interés. El objetivo del presente estudio fue identificar vía la implementación de algoritmos CART las variables edáficas y climáticas que permiten predecir el rendimiento del cultivo de soja en el Sur de Santa Fe, así como descubrir los umbrales que pueden limitar su rendimiento en la región. Los métodos CART son una potente herramienta para la predicción de los rendimientos provenientes de estudios observacionales. Los resultados consensuados por ambos algoritmos sugieren que la compactación edáfica, expresado como Mdelta constituye la variable de mayor impacto para explicar la variabilidad del rendimiento del cultivo en la región. es
dc.description.abstract Soybean (Glycine max (L.) Merr.) yields show high variability even within a small crop area. Observational studies at field scale help explain yield variability under non-experimental conditions. Variability depends on multiple variables, mainly of soil and climate. Classification and regression tree algorithms (CART) were used to analyze yield variation based on explanatory variables that can be correlated and even related through nonlinear trends with yield. CART algorithms represent methods computationally intensive since they are based on recursive partitions of records according to different variables potentially used as predictor of the response of interest. Our objective was to identify, by CART, soil and climatic variables that can predict yield in soybean fields in South of Santa Fe and to determine their thresholds that can limit the crop yield. To build classification trees, a nominal variable was generated for yield from its median. Regression trees were calculated by using yield as a continuous variable. The results suggested that soil compaction is a variable with high potential to limit the crop in the region. CARTs are valuable tools to predict yield from observational studies. The outcomes agreed by both algorithms suggest that soil compaction, expressed as Mdelta are the variables with the greatest impact in explaining the variability in crop yield in the region. en
dc.format.extent 200-200 es
dc.language es es
dc.subject CART es
dc.subject Estudio Observacional es
dc.subject Factor limitante es
dc.subject Predicción de rendimiento es
dc.title Modelización de la Productividad vía Métodos Computacionalmente Intensivos es
dc.type Objeto de conferencia es
sedici.identifier.uri https://40jaiio.sadio.org.ar/sites/default/files/T2011/CAI/Posters/1121.pdf es
sedici.identifier.issn 1852-4850 es
sedici.creator.person Rosales Heredia, Soleana es
sedici.creator.person Bacigaluppo, Silvina es
sedici.creator.person Balzarini, Mónica es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Resumen es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2011-08
sedici.relation.event III Congreso Argentino de Agroinformática (CAI 2011) (XL JAIIO, Córdoba, 29 de agosto al 2 de septiembre de 2011) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)