Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-10-12T14:24:21Z
dc.date.available 2021-10-12T14:24:21Z
dc.date.issued 2011-12-14
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/126457
dc.description.abstract Frustration has proven to give rise to an extremely rich phenomenology in both quantum and classical systems. The leading behavior of the system can often be described by an effective model in which only the lowest-energy degrees of freedom are considered. In this paper, we study a system corresponding to the strong trimerization limit of the spin-1/2 kagome antiferromagnet in a magnetic field. It has been suggested that this system can be realized experimentally by a gas of spinless fermions in an optical kagome lattice at 2/3 filling. We investigate the low-energy behavior of both the spin-1/2 quantum version and the classical limit of this system by applying various techniques. We study in parallel both signs of the coupling constant J since the two cases display qualitative differences. One of the main peculiarities of the J > 0 case is that, at the classical level, there is an exponentially large manifold of lowest-energy configurations. This renders the thermodynamics of the system quite exotic and interesting in this case. For both cases, J > 0 and J < 0, a finite-temperature phase transition with a breaking of the discrete dihedral symmetry group D6 of the model is present. For J < 0, we find a transition temperature T < c /|J | = 1.566 ± 0.005, i.e., of order unity, as expected. We then analyze the nature of the transition in this case. While we find no evidence for a discontinuous transition, the interpretation as a continuous phase transition yields very unusual critical exponents violating the hyperscaling relation. By contrast, in the case J > 0, the transition occurs at an extremely low temperature, T > c ≈ 0.0125 J . Presumably this low transition temperature is connected with the fact that the low-temperature ordered state of the system is established by an order-by-disorder mechanism in this case. en
dc.language en es
dc.subject Physics es
dc.subject Phase transition es
dc.subject Antiferromagnetism es
dc.subject Critical exponent es
dc.subject Coupling constant es
dc.subject Condensed matter physics es
dc.subject Spin model es
dc.subject Frustration es
dc.subject Classical limit es
dc.subject Quantum mechanics es
dc.subject Hexagonal lattice es
dc.title Order by disorder and phase transitions in a highly frustrated spin model on the triangular lattice en
dc.type Articulo es
sedici.identifier.other arXiv:1108.5268 es
sedici.identifier.other doi:10.1103/physrevb.84.224410 es
sedici.identifier.issn 1098-0121 es
sedici.identifier.issn 1550-235x es
sedici.creator.person Honecker, Andreas es
sedici.creator.person Cabra, Daniel Carlos es
sedici.creator.person Everts, H.-U. es
sedici.creator.person Pujol, Pierre es
sedici.creator.person Stauffer, Franck es
sedici.subject.materias Física es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Física La Plata es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Physical Review B es
sedici.relation.journalVolumeAndIssue vol. 84, no. 22 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)