Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-10-12T16:24:10Z
dc.date.available 2021-10-12T16:24:10Z
dc.date.issued 2006-10-26
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/126475
dc.description.abstract The nonequilibrium critical dynamics of the Ising magnet on a fractal substrate, namely the Sierpinski carpet with Hausdorff dimension d H = 1.7925 , has been studied within the short-time regime by means of Monte Carlo simulations. The evolution of the physical observables was followed at criticality, after both annealing ordered spin configurations (ground state) and quenching disordered initial configurations (high temperature state), for three segmentation steps of the fractal. We have obtained evidence showing that during these relaxation processes both the growth and the fragmentation of magnetic domains become influenced by the hierarchical structure of the substrate. In fact, the interplay between the dynamic behavior of the magnet and the underlying fractal leads to the emergence of a logarithmic-periodic oscillation, superimposed to a power law, which has been observed in the time dependence of both the decay of the magnetization and its logarithmic derivative. These oscillations have been carefully characterized in order to determine the critical temperature of the second-order phase transition and the critical exponents corresponding to the short-time regime. The effects of the substrate can also be observed from the dependence of the effective critical exponents on the segmentation step. The exponent θ of the initial increase of the magnetization has also been obtained and the results suggest that it would be almost independent of the fractal dimension of the susbstrate, provided that d H is close enough to d = 2 . The oscillations have been discussed within the framework of the discrete scale invariance of the substrate. en
dc.language en es
dc.subject Sierpinski carpet es
dc.subject Physics es
dc.subject Statistical physics es
dc.subject Scale invariance es
dc.subject Phase transition es
dc.subject Critical exponent es
dc.subject Hausdorff dimension es
dc.subject Fractal dimension es
dc.subject Condensed matter physics es
dc.subject Fractal es
dc.subject Ising model es
dc.title Discrete scale invariance effects in the nonequilibrium critical behavior of the Ising magnet on a fractal substrate en
dc.type Articulo es
sedici.identifier.other arXiv:cond-mat/0603386 es
sedici.identifier.other doi:10.1103/physreve.74.041123 es
sedici.identifier.issn 1539-3755 es
sedici.identifier.issn 1550-2376 es
sedici.creator.person Bab, Marisa Alejandra es
sedici.creator.person Fabricius, Gabriel es
sedici.creator.person Albano, Ezequiel Vicente es
sedici.subject.materias Física es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Physical Review E es
sedici.relation.journalVolumeAndIssue vol. 74, no. 4 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)