Busque entre los 168492 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2021-10-14T18:27:05Z | |
dc.date.available | 2021-10-14T18:27:05Z | |
dc.date.issued | 2020 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/126676 | |
dc.description.abstract | Abstract Consider the Lie group of n × n complex unitary matrices U ( n ) endowed with the bi-invariant Finsler metric given by the spectral norm, ‖ X ‖ U = ‖ U ⁎ X ‖ ∞ = ‖ X ‖ ∞ for any X tangent to a unitary operator U. Given two points in U ( n ) , in general there exist infinitely many curves of minimal length. In this paper we provide a complete description of such curves and as a consequence we give an equivalent condition for uniqueness. Similar studies are done for the Grassmann manifolds. On the other hand, consider the cone of n × n positive invertible matrices G l ( n ) + endowed with the bi-invariant Finsler metric given by the trace norm, ‖ X ‖ 1 , A = ‖ A − 1 / 2 X A − 1 / 2 ‖ 1 for any X tangent to A ∈ G l ( n ) + . In this context, also exist infinitely many curves of minimal length. In this paper we provide a complete description of such curves proving first a characterization of the minimal curves joining two Hermitian matrices X , Y ∈ H ( n ) . The last description is also used to construct minimal paths in the group of unitary matrices U ( n ) endowed with the bi-invariant Finsler metric ‖ X ‖ 1 , U = ‖ U ⁎ X ‖ 1 = ‖ X ‖ 1 for any X tangent to U ∈ U ( n ) . We also study the set of intermediate points in all the previous contexts. | en |
dc.language | en | es |
dc.subject | Combinatorics | es |
dc.subject | Grassmannian | es |
dc.subject | Lie group | es |
dc.subject | Unitary operator | es |
dc.subject | Trace (linear algebra) | es |
dc.subject | Mathematics | es |
dc.subject | Matrix norm | es |
dc.subject | Hermitian matrix | es |
dc.subject | Unitary matrix | es |
dc.title | Minimal curves in U(n) and Gl(n)+ with respect to the spectral and the trace norms | en |
dc.type | Articulo | es |
sedici.identifier.other | arXiv:1907.03368 | es |
sedici.identifier.other | doi:10.1016/j.jmaa.2019.123632 | es |
sedici.identifier.issn | 0022-247x | es |
sedici.identifier.issn | 1096-0813 | es |
sedici.creator.person | Antezana, Jorge Abel | es |
sedici.creator.person | Ghiglioni, Eduardo Mario | es |
sedici.creator.person | Stojanoff, Demetrio | es |
sedici.subject.materias | Matemática | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Departamento de Matemática | es |
sedici.subtype | Preprint | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.description.peerReview | peer-review | es |
sedici.relation.journalTitle | Journal of Mathematical Analysis and Applications | es |
sedici.relation.journalVolumeAndIssue | vol. 483, no. 2 | es |