Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-10-14T18:27:05Z
dc.date.available 2021-10-14T18:27:05Z
dc.date.issued 2020
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/126676
dc.description.abstract Abstract Consider the Lie group of n × n complex unitary matrices U ( n ) endowed with the bi-invariant Finsler metric given by the spectral norm, ‖ X ‖ U = ‖ U ⁎ X ‖ ∞ = ‖ X ‖ ∞ for any X tangent to a unitary operator U. Given two points in U ( n ) , in general there exist infinitely many curves of minimal length. In this paper we provide a complete description of such curves and as a consequence we give an equivalent condition for uniqueness. Similar studies are done for the Grassmann manifolds. On the other hand, consider the cone of n × n positive invertible matrices G l ( n ) + endowed with the bi-invariant Finsler metric given by the trace norm, ‖ X ‖ 1 , A = ‖ A − 1 / 2 X A − 1 / 2 ‖ 1 for any X tangent to A ∈ G l ( n ) + . In this context, also exist infinitely many curves of minimal length. In this paper we provide a complete description of such curves proving first a characterization of the minimal curves joining two Hermitian matrices X , Y ∈ H ( n ) . The last description is also used to construct minimal paths in the group of unitary matrices U ( n ) endowed with the bi-invariant Finsler metric ‖ X ‖ 1 , U = ‖ U ⁎ X ‖ 1 = ‖ X ‖ 1 for any X tangent to U ∈ U ( n ) . We also study the set of intermediate points in all the previous contexts. en
dc.language en es
dc.subject Combinatorics es
dc.subject Grassmannian es
dc.subject Lie group es
dc.subject Unitary operator es
dc.subject Trace (linear algebra) es
dc.subject Mathematics es
dc.subject Matrix norm es
dc.subject Hermitian matrix es
dc.subject Unitary matrix es
dc.title Minimal curves in U(n) and Gl(n)+ with respect to the spectral and the trace norms en
dc.type Articulo es
sedici.identifier.other arXiv:1907.03368 es
sedici.identifier.other doi:10.1016/j.jmaa.2019.123632 es
sedici.identifier.issn 0022-247x es
sedici.identifier.issn 1096-0813 es
sedici.creator.person Antezana, Jorge Abel es
sedici.creator.person Ghiglioni, Eduardo Mario es
sedici.creator.person Stojanoff, Demetrio es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Departamento de Matemática es
sedici.subtype Preprint es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Journal of Mathematical Analysis and Applications es
sedici.relation.journalVolumeAndIssue vol. 483, no. 2 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)