Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-10-21T19:12:17Z
dc.date.available 2021-10-21T19:12:17Z
dc.date.issued 2020-04-15
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/127098
dc.description.abstract The proven ability of music to transmit emotions provokes the increasing interest in the development of new algorithms for music emotion recognition (MER). In this work, we present an automatic system of emotional classification of music by implementing a neural network. This work is based on a previous implementation of a dimensional emotional prediction system in which a multilayer perceptron (MLP) was trained with the freely available MediaEval database. Although these previous results are good in terms of the metrics of the prediction values, they are not good enough to obtain a classification by quadrant based on the valence and arousal values predicted by the neural network, mainly due to the imbalance between classes in the dataset. To achieve better classification values, a pre-processing phase was implemented to stratify and balance the dataset. Three different classifiers have been compared: linear support vector machine (SVM), random forest, and MLP. The best results are obtained with the MLP. An averaged F-measure of 50% is obtained in a four-quadrant classification schema. Two binary classification approaches are also presented: one vs. rest (OvR) approach in four-quadrants and binary classifier in valence and arousal. The OvR approach has an average F-measure of 69%, and the second one obtained F-measure of 73% and 69% in valence and arousal respectively. Finally, a dynamic classification analysis with different time windows was performed using the temporal annotation data of the MediaEval database. The results obtained show that the classification F-measures in four quadrants are practically constant, regardless of the duration of the time window. Also, this work reflects some limitations related to the characteristics of the dataset, including size, class balance, quality of the annotations, and the sound features available. en
dc.language en es
dc.subject Music emotion recognition (MER) es
dc.subject Emotion classification es
dc.subject Prediction es
dc.subject Music features es
dc.subject Multilayer Perceptron es
dc.title Emotional classification of music using neural networks with the MediaEval dataset en
dc.type Articulo es
sedici.identifier.other doi:10.1007/s00779-020-01393-4 es
sedici.identifier.issn 1617-4909 es
sedici.identifier.issn 1617-4917 es
sedici.creator.person Ospitia Medina, Yesid es
sedici.creator.person Beltrán, José Ramón es
sedici.creator.person Baldassarri, Sandra es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Informática es
sedici.subtype Preprint es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Personal and Ubiquitous Computing es
sedici.relation.journalVolumeAndIssue 2020 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)