Busque entre los 170948 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2021-10-26T17:15:50Z | |
dc.date.available | 2021-10-26T17:15:50Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/127302 | |
dc.description.abstract | Single-particle tracking with quantum dots (QDs) constitutes a powerful tool to track the nanoscopic dynamics of individual cell membrane components unveiling their membrane diffusion characteristics. Here, the nano-resolved population dynamics of QDs is exploited to reconstruct the topography and structural changes of the cell membrane surface with high temporal and spatial resolution. For this proof-of-concept study, bright, small, and stable biofunctional QD nanoconstructs are utilized recognizing the endogenous neuronal cannabinoid receptor 1, a highly expressed and fast-diffusing membrane protein, together with a commercial point-localization microscope. Rapid QD diffusion on the axonal plasma membrane of cultured hippocampal neurons allows precise reconstruction of the membrane surface in less than 1 min with a spatial resolution of tens of nanometers. Access of the QD nanoconstructs to the synaptic cleft enables rapid 3D topological reconstruction of the entire presynaptic component. Successful reconstruction of membrane nano-topology and deformation at the second time-scale is also demonstrated for HEK293 cell filopodia and axons. Named "nanoPaint," this super-resolution imaging technique amenable to any endogenous transmembrane target represents a versatile platform to rapidly and accurately reconstruct the cell membrane nano-topography, thereby enabling the study of the rapid dynamic phenomena involved in neuronal membrane plasticity. | en |
dc.language | en | es |
dc.subject | Biophysics | es |
dc.subject | Membrane protein | es |
dc.subject | Super-resolution microscopy | es |
dc.subject | Materials science | es |
dc.subject | Transmembrane protein | es |
dc.subject | Cell membrane | es |
dc.subject | Population | es |
dc.subject | Synaptic cleft | es |
dc.subject | Membrane | es |
dc.subject | Filopodia | es |
dc.subject | Cannabinoid receptor type 1 | es |
dc.subject | Neuronal plasticity | es |
dc.subject | Quantum dots | es |
dc.subject | Synapses | es |
dc.title | NanoPaint: a tool for rapid and dynamic imaging of membrane structural plasticity at the nanoscale | en |
dc.type | Articulo | es |
sedici.identifier.other | pmid:31583817 | es |
sedici.identifier.other | doi:10.1002/smll.201902796 | es |
sedici.identifier.issn | 1613-6829 | es |
sedici.identifier.issn | 1613-6810 | es |
sedici.creator.person | Tasso, Mariana | es |
sedici.creator.person | Pons, Thomas | es |
sedici.creator.person | Lequeux, Nicolas | es |
sedici.creator.person | Nguyen, Julie | es |
sedici.creator.person | Lenkei, Zsolt | es |
sedici.creator.person | Zala, Diana | es |
sedici.subject.materias | Física | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas | es |
sedici.subtype | Articulo | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.description.peerReview | peer-review | es |
sedici.relation.journalTitle | Small | es |
sedici.relation.journalVolumeAndIssue | vol. 15, no. 47 | es |