Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-10-26T17:15:50Z
dc.date.available 2021-10-26T17:15:50Z
dc.date.issued 2019
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/127302
dc.description.abstract Single-particle tracking with quantum dots (QDs) constitutes a powerful tool to track the nanoscopic dynamics of individual cell membrane components unveiling their membrane diffusion characteristics. Here, the nano-resolved population dynamics of QDs is exploited to reconstruct the topography and structural changes of the cell membrane surface with high temporal and spatial resolution. For this proof-of-concept study, bright, small, and stable biofunctional QD nanoconstructs are utilized recognizing the endogenous neuronal cannabinoid receptor 1, a highly expressed and fast-diffusing membrane protein, together with a commercial point-localization microscope. Rapid QD diffusion on the axonal plasma membrane of cultured hippocampal neurons allows precise reconstruction of the membrane surface in less than 1 min with a spatial resolution of tens of nanometers. Access of the QD nanoconstructs to the synaptic cleft enables rapid 3D topological reconstruction of the entire presynaptic component. Successful reconstruction of membrane nano-topology and deformation at the second time-scale is also demonstrated for HEK293 cell filopodia and axons. Named "nanoPaint," this super-resolution imaging technique amenable to any endogenous transmembrane target represents a versatile platform to rapidly and accurately reconstruct the cell membrane nano-topography, thereby enabling the study of the rapid dynamic phenomena involved in neuronal membrane plasticity. en
dc.language en es
dc.subject Biophysics es
dc.subject Membrane protein es
dc.subject Super-resolution microscopy es
dc.subject Materials science es
dc.subject Transmembrane protein es
dc.subject Cell membrane es
dc.subject Population es
dc.subject Synaptic cleft es
dc.subject Membrane es
dc.subject Filopodia es
dc.subject Cannabinoid receptor type 1 es
dc.subject Neuronal plasticity es
dc.subject Quantum dots es
dc.subject Synapses es
dc.title NanoPaint: a tool for rapid and dynamic imaging of membrane structural plasticity at the nanoscale en
dc.type Articulo es
sedici.identifier.other pmid:31583817 es
sedici.identifier.other doi:10.1002/smll.201902796 es
sedici.identifier.issn 1613-6829 es
sedici.identifier.issn 1613-6810 es
sedici.creator.person Tasso, Mariana es
sedici.creator.person Pons, Thomas es
sedici.creator.person Lequeux, Nicolas es
sedici.creator.person Nguyen, Julie es
sedici.creator.person Lenkei, Zsolt es
sedici.creator.person Zala, Diana es
sedici.subject.materias Física es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Small es
sedici.relation.journalVolumeAndIssue vol. 15, no. 47 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)