Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-11-08T14:51:40Z
dc.date.available 2021-11-08T14:51:40Z
dc.date.issued 2007-10-02
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/127869
dc.description.abstract The detection of regions and objects in digital images is a topic of utmost importance for solving several problems related to the area of pattern recognition. In this direction, skeletonization algorithms are a widely used tool since they allow us to reduce the quantity of available data, easing the detection of characteristics for their recognition and classification. In addition, this transformation of the original data in its essential characteristics eases the elimination of local noise which is present in the data input. This paper proposes a new skeletonization strategy applicable to sparse images from a competitive, dynamic neural network trained with the AVGSOM method. The strategy developed in this paper determines the arc making up the skeleton combining AVGSOM non-supervised learning with a minimum spanning tree. The proposed method has been applied in images with different spanning shape and degree. In particular, the results obtained have been compared to existing solutions, showing successful results. Finally, some conclusions, together with some future lines of work, are presented. en
dc.format.extent 33-42 es
dc.language en es
dc.subject Skeletonization es
dc.subject Dynamic self-organizing maps es
dc.subject Neural networks es
dc.subject Digital image processing es
dc.title Skeletonization of sparse shapes using dynamic competitive neural networks en
dc.type Articulo es
sedici.identifier.uri http://journal.iberamia.org/public/ia-old/articles/540/article%20%281%29.pdf es
sedici.identifier.other doi:10.4114/ia.v11i35.898 es
sedici.identifier.issn 1137-3601 es
sedici.identifier.issn 1988-3064 es
sedici.creator.person Hasperué, Waldo es
sedici.creator.person Corbalán, Leonardo César es
sedici.creator.person Lanzarini, Laura Cristina es
sedici.creator.person Bria, Oscar N. es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Informática es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Inteligencia Artificial es
sedici.relation.journalVolumeAndIssue vol. 11, no. 35 es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/22675 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)