Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-12-15T14:46:01Z
dc.date.available 2021-12-15T14:46:01Z
dc.date.issued 2019-02-12
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/129631
dc.description.abstract For a given Hilbert space H, consider the space of self-adjoint projections P(H). In this paper we study the differentiable structure of a canonical sphere bundle over P(H) given by R={(P,f)∈P(H)×H:Pf=f,∥f∥=1}. We establish the smooth action on R of the group of unitary operators of H, and it thereby turns out that the connected components of R are homogeneous spaces. Then we study the metric structure of R by endowing it first with the uniform quotient metric, which is a Finsler metric, and we establish minimality results for the geodesics. These are given by certain one-parameter groups of unitary operators, pushed into R by the natural action of the unitary group. Then we study the restricted bundle R+2 given by considering only the projections in the restricted Grassmannian, locally modeled by Hilbert–Schmidt operators. Therefore we endow R+2 with a natural Riemannian metric that can be obtained by declaring that the action of the group is a Riemannian submersion. We study the Levi–Civita connection of this metric and establish a Hopf–Rinow theorem for R+2, again obtaining a characterization of the geodesics as the image of certain one-parameter groups with special speeds. en
dc.format.extent 179-203 es
dc.language en es
dc.title Canonical sphere bundles of the Grassmann manifold en
dc.type Articulo es
sedici.identifier.other doi:10.1007/s10711-019-00431-7 es
sedici.identifier.issn 0046-5755 es
sedici.identifier.issn 1572-9168 es
sedici.creator.person Andruchow, Esteban es
sedici.creator.person Chiumiento, Eduardo Hernán es
sedici.creator.person Larotonda, Gabriel es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Departamento de Matemática es
sedici.subtype Preprint es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Geometriae Dedicata es
sedici.relation.journalVolumeAndIssue vol. 203, no. 1 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)