Busque entre los 171529 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2021-12-15T14:46:01Z | |
dc.date.available | 2021-12-15T14:46:01Z | |
dc.date.issued | 2019-02-12 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/129631 | |
dc.description.abstract | For a given Hilbert space H, consider the space of self-adjoint projections P(H). In this paper we study the differentiable structure of a canonical sphere bundle over P(H) given by R={(P,f)∈P(H)×H:Pf=f,∥f∥=1}. We establish the smooth action on R of the group of unitary operators of H, and it thereby turns out that the connected components of R are homogeneous spaces. Then we study the metric structure of R by endowing it first with the uniform quotient metric, which is a Finsler metric, and we establish minimality results for the geodesics. These are given by certain one-parameter groups of unitary operators, pushed into R by the natural action of the unitary group. Then we study the restricted bundle R+2 given by considering only the projections in the restricted Grassmannian, locally modeled by Hilbert–Schmidt operators. Therefore we endow R+2 with a natural Riemannian metric that can be obtained by declaring that the action of the group is a Riemannian submersion. We study the Levi–Civita connection of this metric and establish a Hopf–Rinow theorem for R+2, again obtaining a characterization of the geodesics as the image of certain one-parameter groups with special speeds. | en |
dc.format.extent | 179-203 | es |
dc.language | en | es |
dc.title | Canonical sphere bundles of the Grassmann manifold | en |
dc.type | Articulo | es |
sedici.identifier.other | doi:10.1007/s10711-019-00431-7 | es |
sedici.identifier.issn | 0046-5755 | es |
sedici.identifier.issn | 1572-9168 | es |
sedici.creator.person | Andruchow, Esteban | es |
sedici.creator.person | Chiumiento, Eduardo Hernán | es |
sedici.creator.person | Larotonda, Gabriel | es |
sedici.subject.materias | Matemática | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Departamento de Matemática | es |
sedici.subtype | Preprint | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.description.peerReview | peer-review | es |
sedici.relation.journalTitle | Geometriae Dedicata | es |
sedici.relation.journalVolumeAndIssue | vol. 203, no. 1 | es |