Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-02-23T14:48:08Z
dc.date.available 2022-02-23T14:48:08Z
dc.date.issued 2003-09-15
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/131540
dc.description.abstract We consider the resolvent of a system of first-order differential operators with a regular singularity, admitting a family of self-adjoint extensions. We find that the asymptotic expansion for the resolvent in the general case presents powers of λ which depend on the singularity, and can take even irrational values. The consequences for the pole structure of the corresponding ζ- and η-functions are also discussed. en
dc.format.extent 9991-10010 es
dc.language en es
dc.subject Operator theory es
dc.subject Functional analysis es
dc.subject Functional analytical methods es
dc.title Unusual poles of the ζ-functions for some regular singular differential operators en
dc.type Articulo es
sedici.identifier.other arXiv:math-ph/0303030 es
sedici.identifier.other doi:10.1088/0305-4470/36/39/302 es
sedici.identifier.issn 0305-4470 es
sedici.identifier.issn 1361-6447 es
sedici.creator.person Falomir, Horacio Alberto es
sedici.creator.person Muschietti, María Amelia es
sedici.creator.person González Pisani, Pablo Andrés es
sedici.creator.person Seeley, R. es
sedici.subject.materias Física es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Física La Plata es
mods.originInfo.place Departamento de Matemática es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Journal of Physics A: Mathematical and General es
sedici.relation.journalVolumeAndIssue vol. 36, no. 39 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)