Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-03-02T18:47:44Z
dc.date.available 2022-03-02T18:47:44Z
dc.date.issued 2020-12
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/131838
dc.description.abstract Simulation-based probabilistic inversions of 3D magnetotelluric (MT) data are arguably the best option to deal with the non-linearity and non-uniqueness of the MT problem. However, the computational cost associated with the modeling of 3D MT data has so far precluded the community from adopting and/or pursuing full probabilistic inversions of large MT datasets. In this contribution, we present a novel and general inversion framework, driven by Markov chain Monte Carlo (MCMC) algorithms, which combines i) an efficient parallel-in-parallel structure to solve the 3D forward problem, ii) a reduced order technique to create fast and accurate surrogate models of the forward problem, and iii) adaptive strategies for both the MCMC algorithm and the surrogate model. In particular, and contrary to traditional implementations, the adaptation of the surrogate is integrated into the MCMC inversion. This circumvents the need of costly offline stages to build the surrogate and further increases the overall efficiency of the method. We demonstrate the feasibility and performance of our approach to invert for large-scale conductivity structures with two numerical examples using different parameterizations and dimensionalities. In both cases, we report staggering gains in computational efficiency compared to traditional MCMC implementations. Our method finally removes the main bottleneck of probabilistic inversions of 3D MT data and opens up new opportunities for both stand-alone MT inversions and multi-observable joint inversions for the physical state of the Earth’s interior. en
dc.format.extent 1837-1863 es
dc.language en es
dc.subject Composition and structure of the mantle es
dc.subject Magnetotellurics es
dc.subject Inverse theory es
dc.subject Numerical approximations and analysis es
dc.subject Numerical modelling es
dc.title A reduced order approach for probabilistic inversions of 3-D magnetotelluric data I: general formulation en
dc.type Articulo es
sedici.identifier.other doi:10.1093/gji/ggaa415 es
sedici.identifier.issn 0956-540X es
sedici.identifier.issn 1365-246X es
sedici.creator.person Manassero, María Constanza es
sedici.creator.person Afonso, Juan Carlos es
sedici.creator.person Zyserman, Fabio Iván es
sedici.creator.person Zlotnik, Sergio es
sedici.creator.person Fomin, Ilya es
sedici.subject.materias Astronomía es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Astronómicas y Geofísicas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Geophysical Journal International es
sedici.relation.journalVolumeAndIssue vol. 223, no. 3 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)