Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-03-03T18:06:02Z
dc.date.available 2022-03-03T18:06:02Z
dc.date.issued 2018
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/131931
dc.description.abstract Sommerfeld in 1916 introduced the dimensionless fine structure constant, α, in to the context of atomic physics, in the course of working out the relativistic theory of the H atom, under the old quantum theory of Bohr. He was able to account for the fine structural detail of the atomic line spectrum of H by introducing this dimensionless constant which emerged naturally from his relativistic theory of the H atom. Since this time, the fine structure constant has emerged in several other contexts within experimental and theoretical physics. It has attained a status of being a mysterious number in physics that defies understanding as to its experimentally verified magnitude and identity. Being physically dimensionless, such a number invites a suggestion (or approximation) of its value in terms of mathematical constants in some formulation. Feynman most famously has conjectured that it might be possible to account for α in some type of series or product expression in “e”, the base of natural logarithms, and “π” the familiar circular constant. Here we propose an infinite series in the product e·π that converges, within a few terms, to better than 9999 parts in 10,000 of the true value of α. en
dc.format.extent 651-655 es
dc.language en es
dc.subject Fine structure constant α es
dc.subject Sommerfeld es
dc.subject Infinite series es
dc.subject e, π es
dc.title Sommerfeld’s fine structure constant approximated as a series representation in e and π en
dc.type Articulo es
sedici.identifier.other doi:10.1007/s10910-017-0835-8 es
sedici.identifier.issn 0259-9791 es
sedici.identifier.issn 1572-8897 es
sedici.creator.person Bucknum, Michael J. es
sedici.creator.person Castro, Eduardo A. es
sedici.subject.materias Ciencias Exactas es
sedici.subject.materias Física es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas es
sedici.subtype Comunicacion es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Journal of Mathematical Chemistry es
sedici.relation.journalVolumeAndIssue vol. 56, no. 3 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)