Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-03-14T14:04:02Z
dc.date.available 2022-03-14T14:04:02Z
dc.date.issued 2010
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/132507
dc.description.abstract A new homogenization theory to model the mechanical response of hyperelastic solids reinforced by a random distribution of aligned cylindrical fibers is proposed. The central idea is to devise a special class of microstructures—by means of an iterated homogenization procedure in finite elasticity together with an exact dilute result for sequential laminates—that allows to compute exactly the macroscopic response of the resulting fiber-reinforced materials. The proposed framework incorporates direct microstructural information up to the two-point correlation functions, and requires the solution to a Hamilton–Jacobi equation with the fiber concentration and the macroscopic deformation gradient playing the role of “time” and “spatial” variables, respectively. In addition to providing constitutive models for the macroscopic response of fiber-reinforced materials, the proposed theory also gives information about the local fields in the matrix and fibers, which can be used to study the evolution of microstructure and the development of instabilities. As a first application of the theory, closed-form results for the case of Neo-Hookean solids reinforced by a transversely isotropic distribution of anisotropic fibers are worked out. These include a novel explicit criterion for the onset of instabilities under general finite-strain loading conditions. en
dc.format.extent 57-83 es
dc.language en es
dc.subject Finite strain es
dc.subject Hamilton–Jacobi equation es
dc.subject Homogenization es
dc.subject Instabilities es
dc.subject Microstructures es
dc.title Fiber-reinforced hyperelastic solids: a realizable homogenization constitutive theory en
dc.type Articulo es
sedici.identifier.other doi:10.1007/s10665-009-9359-y es
sedici.identifier.issn 0022-0833 es
sedici.identifier.issn 1573-2703 es
sedici.creator.person Lopez Pamies, Oscar es
sedici.creator.person Idiart, Martín Ignacio es
sedici.subject.materias Ingeniería es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ingeniería es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Journal of Engineering Mathematics es
sedici.relation.journalVolumeAndIssue vol. 68, no. 1 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)