Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-04-05T18:27:29Z
dc.date.available 2022-04-05T18:27:29Z
dc.date.issued 2016-06
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/133963
dc.description.abstract Cooperative binding has been described in many publications and has been related to or defined by several different properties of the binding behavior of the ligand to the target molecule. In addition to the commonly used Hill coefficient, other characteristics such as a sigmoidal shape of the overall titration curve in a linear plot, a change of ligand affinity of the other binding sites when a site of the target molecule becomes occupied, or complex roots of the binding polynomial have been used to define or to quantify cooperative binding. In this work, we analyze how the different properties are related in the most general model for binding curves based on the grand canonical partition function and present several examples which highlight differences between the cooperativity characterizing properties which are discussed. Our results mainly show that among the presented definitions there are not two which fully coincide. Moreover, this work poses the question whether it can make sense to distinguish between positive and negative cooperativity based on the macroscopic binding isotherm only. This article shall emphasize that scientists who investigate cooperative effects in biological systems could help avoiding misunderstandings by stating clearly which kind of cooperativity they discuss. en
dc.format.extent 1747-1774 es
dc.language en es
dc.subject Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics es
dc.subject Classical equilibrium statistical mechanics (general) es
dc.subject Biochemistry, molecular biology es
dc.subject Biophysics es
dc.subject None of the above, but in this section es
dc.title Cooperative binding: a multiple personality en
dc.type Articulo es
sedici.identifier.other doi:10.1007/s00285-015-0922-z es
sedici.identifier.other pmid:26319983 es
sedici.identifier.issn 1432-1416 es
sedici.identifier.issn 0303-6812 es
sedici.creator.person Martini, Johannes W. R. es
sedici.creator.person Diambra, Luis Aníbal es
sedici.creator.person Habeck, Michael es
sedici.subject.materias Biología es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
mods.originInfo.place Centro Regional de Estudios Genómicos es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Journal of Mathematical Biology es
sedici.relation.journalVolumeAndIssue vol. 72, no. 7 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)