Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-04-26T16:01:02Z
dc.date.available 2022-04-26T16:01:02Z
dc.date.issued 2019-07-05
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/135041
dc.description.abstract We are interested in data-driven approaches to Natural Language Generation, but semantic representations for human text are difficult and expensive to construct. By considering a methods implementation as weak semantics for the English terms extracted from the method’s name we can collect massive datasets, akin to have words and sensor dataaligned at a scale never seen before. We applied our learned model to name scrambling, a common technique used to protect intellectual property and increase the effort necessary to reverse engineer Java binary code: replacing all the method and class names by a random identifier. Using 5.6M bytecode-compiled Java methods obtained from the Debianarchive, we trained a Random Forest model to predict the first term in the method name. As features, we use primarily the opcodes of the bytecodes (that is, bytecodes without any parameters). Our results indicate that we can distinguish the 15 most popular terms from the others at 78% recall, helping a programmer performing reverse engineering to reduce half of the methods in a program they should further investigate. We also performed some preliminary experiments using neural machine translation. en
dc.format.extent 26-42 es
dc.language en es
dc.subject random forest model es
dc.subject Natural language es
dc.subject bytecodes es
dc.title Deobfuscating Name Scrambling as a Natural Language Generation Task en
dc.type Articulo es
sedici.identifier.uri https://publicaciones.sadio.org.ar/index.php/EJS/article/view/85 es
sedici.identifier.issn 1514-6774 es
sedici.creator.person Duboue, Pablo Ariel es
sedici.description.note Special Issue dedicated to JAIIO 2018 (Jornadas Argentinas de Informática). es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Electronic Journal of SADIO es
sedici.relation.journalVolumeAndIssue vol. 18, no. 1 es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/70714 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)