Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-04-26T16:42:50Z
dc.date.available 2022-04-26T16:42:50Z
dc.date.issued 2020-05-19
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/135049
dc.description.abstract Optimization of hyper-parameters in real-world applications of reinforcement learning (RL) is a key issue, because their settings determine how fast the agent will learn its policy by interacting with its environment due to the information content of data gathered. In this work, an approach that uses Bayesian optimization to perform an autonomous two-tier optimization of both representation decisions and algorithm hyper-parameters is proposed: first, categorical / structural RL hyper-parameters are taken as binary variables and optimized with an acquisition function tailored for such type of variables. Then, at a lower level of abstraction, solution-level hyper-parameters are optimized by resorting to the expected improvement acquisition function, whereas the categorical hyper-parameters found in the optimization at the upper level of abstraction are fixed. This two-tier approach is validated with a tabular and neural network setting of the value function, in a classic simulated control task. Results obtained are promising and open the way for more user-independent applications of reinforcement learning. en
dc.format.extent 2-27 es
dc.language en es
dc.subject Reinforcement learning es
dc.subject hyper-parameter optimization es
dc.subject Bayesian optimization es
dc.subject Bayesian optimization of combinatorial structures (BOCS) es
dc.title A Hierarchical Two-tier Approach to Hyper-parameter Optimization in Reinforcement Learning en
dc.type Articulo es
sedici.identifier.uri https://publicaciones.sadio.org.ar/index.php/EJS/article/view/165 es
sedici.identifier.issn 1514-6774 es
sedici.creator.person Barsce, Juan Cruz es
sedici.creator.person Palombarini, Jorge es
sedici.creator.person Martínez, Ernesto es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.relation.event XX Simposio Argentino de Inteligencia Artificial (ASAI 2019) - JAIIO 48 (Salta) es
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Electronic Journal of SADIO es
sedici.relation.journalVolumeAndIssue vol. 19, no. 2 es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/87851 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)