Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-04-28T13:34:50Z
dc.date.available 2022-04-28T13:34:50Z
dc.date.issued 2018-04-04
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/135217
dc.description.abstract Providing recommendations to groups of users has become popular in many applications today. Even though there are several group recommendation techniques, the generation of recommendations that satisfy the group members in an even way remains a challenge. Because of this, we have developed a multi-agent approach called MAGReS that relies on negotiation techniques to improve group recommendations. Our approach was tested (on the movies domain) using synthetic data with satisfactory results. Given that the results when using synthetic data may sometimes dier with reality, we decided to assess MAGReS using data from real users. The results obtained showed rstly that, in comparison with the recommendations produced by a traditional approach, the recommendations of MAGReS produce a greater level of satisfaction to the group, and secondly that the proposed approach was able to predict more accurately the satisfaction levels of the group members. Finally, we could obtain some preliminary feedback regarding the explanations provided by the recommender system. en
dc.format.extent 54-76 es
dc.language en es
dc.subject sistema de recomendación es
dc.subject Intelligent agents es
dc.subject Multiagent systems es
dc.subject Grupo de usuarios es
dc.title Using negotiation for group recommendation en
dc.type Articulo es
sedici.identifier.uri https://publicaciones.sadio.org.ar/index.php/EJS/article/view/45 es
sedici.identifier.issn 1514-6774 es
sedici.title.subtitle A user-study on the movies domain en
sedici.creator.person Villavicencio, Christian es
sedici.creator.person Schiaffino, Silvia es
sedici.creator.person Diaz Pace, J. Andrés es
sedici.creator.person Monteserin, Ariel es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.relation.event XVIII Simposio Argentino de Inteligencia Artificial (ASAI) - JAIIO 46 (Córdoba, 2017) es
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Electronic Journal of SADIO es
sedici.relation.journalVolumeAndIssue vol. 17, no. 1 es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/65948 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)