Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-04-29T14:04:11Z
dc.date.available 2022-04-29T14:04:11Z
dc.date.issued 2004-06-26
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/135315
dc.description.abstract A Multi-Objective Genetic Algorithm (MOGA) application, which is based on the aggregating approach, is proposed in this article. Its aim is to find a consistent instrument configuration for industrial process plants that will constitute a convenient initial set of input data for structural Observability Analysis Algorithms (OAs). The better this configuration is, the faster the OAs will converge to a satisfactory solution. Algorithmic effectiveness was evaluated through the analysis of small academic case studies. The results obtained through our algorithm show excellent performance. Therefore, it can be stated that the prototype presented in this work is good enough to serve as a sound basis for the development of the definitive MOGA module, whose implementation will support large-size industrial plant models. en
dc.format.extent 34-41 es
dc.language en es
dc.subject Multi-Objective Optimization es
dc.subject Genetic algorithms es
dc.subject Sensor Network Design es
dc.title Initial Sensor Network Design with a Multi-Objective Genetic Algorithm en
dc.type Articulo es
sedici.identifier.uri https://publicaciones.sadio.org.ar/index.php/EJS/article/view/106 es
sedici.identifier.issn 1514-6774 es
sedici.creator.person Carballido, Jessica Andrea es
sedici.creator.person Ponzoni, Ignacio es
sedici.creator.person Brignole, Nélida B. es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Electronic Journal of SADIO es
sedici.relation.journalVolumeAndIssue vol. 6 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)