Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-05-02T15:07:44Z
dc.date.available 2022-05-02T15:07:44Z
dc.date.issued 2008-06-26
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/135408
dc.description.abstract We present remote Operating System detection as an inference problem: given a set of observations (the target host responses to a set of tests), we want to infer the OS type which most probably generated these observations. Classical techniques used to perform this analysis present several limitations. To improve the analysis, we have developed tools using neural networks and Statistics tools. We present two working modules: one which uses DCE-RPC endpoints to distinguish Windows versions, and another which uses Nmap signatures to distinguish different version of Windows, Linux, Solaris, OpenBSD, FreeBSD and NetBSD systems. We explain the details of the topology and inner workings of the neural networks used, and the fine tuning of their parameters. Finally we show positive experimental results. en
dc.format.extent 35-47 es
dc.language en es
dc.subject Neural networks es
dc.subject OS Fingerprinting es
dc.subject DCE-RPC endpoint mapper es
dc.title Using Neural Networks to improve classical Operating System Fingerprinting techniques en
dc.type Articulo es
sedici.identifier.uri https://publicaciones.sadio.org.ar/index.php/EJS/article/view/98 es
sedici.identifier.issn 1514-6774 es
sedici.creator.person Sarraute, Carlos es
sedici.creator.person Burroni, Javier es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Electronic Journal of SADIO es
sedici.relation.journalVolumeAndIssue vol. 8 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)