Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-05-02T18:15:37Z
dc.date.available 2022-05-02T18:15:37Z
dc.date.issued 2008-06-26
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/135449
dc.description.abstract This work presents a hybrid wrapper/filter algorithm for feature subset selection that can use a combination of several quality criteria measures to rank the set of features of a dataset. These ranked features are used to prune the search space of subsets of possible features such that the number of times the wrapper executes the learning algorithm for a dataset with M features is reduced to O(M) runs. Experimental results using 14 datasets show that, for most of the datasets, the AUC assessed using the reduced feature set is comparable to the AUC of the model constructed using all the features. Furthermore, the algorithm archieved a good reduction in the number of features. en
dc.format.extent 12-24 es
dc.language en es
dc.subject Feature Subset Selection es
dc.subject Wrapper es
dc.subject Filter es
dc.subject Machine Learning es
dc.subject Data Mining es
dc.title A hybrid wrapper/filter approach for feature subset selection en
dc.type Articulo es
sedici.identifier.uri https://publicaciones.sadio.org.ar/index.php/EJS/article/view/96 es
sedici.identifier.issn 1514-6774 es
sedici.creator.person Prati, Ronaldo C. es
sedici.creator.person Batista, Gustavo E. A. P. A. es
sedici.creator.person Monard, Maria Carolina es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.relation.journalTitle Electronic Journal of SADIO es
sedici.relation.journalVolumeAndIssue vol. 8 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)