Busque entre los 166753 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2022-05-02T18:43:05Z | |
dc.date.available | 2022-05-02T18:43:05Z | |
dc.date.issued | 2000-06-26 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/135464 | |
dc.description.abstract | The underlying concept in Reinforcement Learning is as simple as it is attractive: to learn by trial and error from the interaction with the environment. This approach allows us to deal with problems where a learning technique searches to improve the performance of the agent (the learner) over time. Reinforcement Learning groups a set of such techniques, and it uses a performance measure based on two types of signals given by a Critic or Reinforcement Function: penalty and reward. | en |
dc.language | es | es |
dc.subject | Reinforcement Learning | es |
dc.subject | Artificial Neural Networks | es |
dc.title | Contribution to the study and the design of reinforcement functions | en |
dc.type | Articulo | es |
sedici.identifier.uri | https://publicaciones.sadio.org.ar/index.php/EJS/article/view/127 | es |
sedici.identifier.issn | 1514-6774 | es |
sedici.creator.person | Santos, Juan Miguel | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Sociedad Argentina de Informática e Investigación Operativa | es |
sedici.subtype | Articulo | es |
sedici.rights.license | Creative Commons Attribution 4.0 International (CC BY 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
sedici.relation.journalTitle | Electronic Journal of SADIO | es |
sedici.relation.journalVolumeAndIssue | vol. 3 | es |