Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-05-02T18:43:05Z
dc.date.available 2022-05-02T18:43:05Z
dc.date.issued 2000-06-26
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/135464
dc.description.abstract The underlying concept in Reinforcement Learning is as simple as it is attractive: to learn by trial and error from the interaction with the environment. This approach allows us to deal with problems where a learning technique searches to improve the performance of the agent (the learner) over time. Reinforcement Learning groups a set of such techniques, and it uses a performance measure based on two types of signals given by a Critic or Reinforcement Function: penalty and reward. en
dc.language es es
dc.subject Reinforcement Learning es
dc.subject Artificial Neural Networks es
dc.title Contribution to the study and the design of reinforcement functions en
dc.type Articulo es
sedici.identifier.uri https://publicaciones.sadio.org.ar/index.php/EJS/article/view/127 es
sedici.identifier.issn 1514-6774 es
sedici.creator.person Santos, Juan Miguel es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.relation.journalTitle Electronic Journal of SADIO es
sedici.relation.journalVolumeAndIssue vol. 3 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)