Busque entre los 169499 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2022-05-11T19:04:19Z | |
dc.date.available | 2022-05-11T19:04:19Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/136167 | |
dc.description.abstract | Monitoring processor power is important to define strategies that allow reducing energy costs in computer systems. Today, processors have a large number of counters that allow monitoring system events such as CPU usage, memory, cache, and so forth. In previous works, it has been shown that parallel application consumption can be predicted through these events, but only for a given SBC board architecture. In this article, we analyze the portability of a power prediction statistical model on a new generation of Raspberry boards. Our experiments focus on the optimizations using different statistical methods so as to systematically reduce the final estimation error in the architectures analyzed. The final models yield an average error between 2.24% and 4.45%, increasing computational cost as the prediction error decreases. | en |
dc.format.extent | 53-65 | es |
dc.language | es | es |
dc.subject | Power | es |
dc.subject | Raspberry Pi | es |
dc.subject | Hardware counters | es |
dc.subject | Modeling | es |
dc.subject | Statistical models | es |
dc.title | Unified Power Modeling Design for Various Raspberry Pi Generations Analyzing Different Statistical Methods | en |
dc.type | Objeto de conferencia | es |
sedici.identifier.other | doi:10.1007/978-3-030-48325-8_4 | es |
sedici.identifier.issn | 1865-0929 | es |
sedici.identifier.issn | 1865-0937 | es |
sedici.identifier.isbn | 978-3-030-48325-8 | es |
sedici.creator.person | Paniego, Juan Manuel | es |
sedici.creator.person | Libutti, Leandro Ariel | es |
sedici.creator.person | Pi Puig, Martín | es |
sedici.creator.person | Chichizola, Franco | es |
sedici.creator.person | De Giusti, Laura Cristina | es |
sedici.creator.person | Naiouf, Marcelo | es |
sedici.creator.person | De Giusti, Armando Eduardo | es |
sedici.description.note | Trabajo publicado en Pesado, P., Arroyo, M. (eds.). Computer Science – CACIC 2019. Communications in Computer and Information Science (CCIS), vol. 1184. Springer, Cham. | es |
sedici.subject.materias | Informática | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Instituto de Investigación en Informática | es |
mods.originInfo.place | Comisión de Investigaciones Científicas de la provincia de Buenos Aires | es |
mods.originInfo.place | Consejo Nacional de Investigaciones Científicas y Técnicas | es |
sedici.subtype | Objeto de conferencia | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.date.exposure | 2019 | |
sedici.relation.event | 25th Argentine Congress of Computer Science (CACIC 2019) (Río Cuarto, Argentina, October 14–18, 2019) | es |
sedici.description.peerReview | peer-review | es |
sedici.relation.bookTitle | Computer Science – CACIC 2019 | es |