Upload resources

Upload your works to SEDICI to increase its visibility and improve its impact

 

Show simple item record

dc.date.accessioned 2022-06-21T19:08:47Z
dc.date.available 2022-06-21T19:08:47Z
dc.date.issued 2020
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/138133
dc.description.abstract We study the Heil–Ramanathan–Topiwala conjecture in Lp spaces by reformulating it as a fixed point problem. This reformulation shows that a function with linearly dependent time–frequency translates has a very rigid structure, which is encoded in a family of linear operators. This is used to give an elementary proof that if f∈Lp(R), p∈[1,2], and Λ⊆R×R is contained in a lattice then the set of time frequency translates (f(a,b))(a,b)∈Λ is linearly independent. Our proof also works for the case 2 < p < ∞ if Λ is contained in a lattice of the form αZ×βZ. en
dc.format.extent 1-15 es
dc.language en es
dc.subject Time frequency translates es
dc.subject Linear independence es
dc.subject Ergodicity es
dc.subject Symplectic transformation es
dc.subject Lattice es
dc.subject Lp spaces es
dc.title Linear independence of time–frequency translates in Lp spaces en
dc.type Articulo es
sedici.identifier.other doi:10.1007/s00041-020-09774-2 es
sedici.identifier.issn 1069-5869 es
sedici.identifier.issn 1531-5851 es
sedici.creator.person Antezana, Jorge Abel es
sedici.creator.person Bruna, Joaquim es
sedici.creator.person Pujals, Enrique es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Centro de Investigación de Matemática es
sedici.subtype Contribucion a revista es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Journal of Fourier Analysis and Applications es
sedici.relation.journalVolumeAndIssue vol. 26, no. 4 es


Download Files

This item appears in the following Collection(s)

Creative Commons Attribution 4.0 International (CC BY 4.0) Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International (CC BY 4.0)