Search among the 163679 resources available in the repository
dc.date.accessioned | 2022-06-21T19:08:47Z | |
dc.date.available | 2022-06-21T19:08:47Z | |
dc.date.issued | 2020 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/138133 | |
dc.description.abstract | We study the Heil–Ramanathan–Topiwala conjecture in Lp spaces by reformulating it as a fixed point problem. This reformulation shows that a function with linearly dependent time–frequency translates has a very rigid structure, which is encoded in a family of linear operators. This is used to give an elementary proof that if f∈Lp(R), p∈[1,2], and Λ⊆R×R is contained in a lattice then the set of time frequency translates (f(a,b))(a,b)∈Λ is linearly independent. Our proof also works for the case 2 < p < ∞ if Λ is contained in a lattice of the form αZ×βZ. | en |
dc.format.extent | 1-15 | es |
dc.language | en | es |
dc.subject | Time frequency translates | es |
dc.subject | Linear independence | es |
dc.subject | Ergodicity | es |
dc.subject | Symplectic transformation | es |
dc.subject | Lattice | es |
dc.subject | Lp spaces | es |
dc.title | Linear independence of time–frequency translates in Lp spaces | en |
dc.type | Articulo | es |
sedici.identifier.other | doi:10.1007/s00041-020-09774-2 | es |
sedici.identifier.issn | 1069-5869 | es |
sedici.identifier.issn | 1531-5851 | es |
sedici.creator.person | Antezana, Jorge Abel | es |
sedici.creator.person | Bruna, Joaquim | es |
sedici.creator.person | Pujals, Enrique | es |
sedici.subject.materias | Matemática | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Centro de Investigación de Matemática | es |
sedici.subtype | Contribucion a revista | es |
sedici.rights.license | Creative Commons Attribution 4.0 International (CC BY 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
sedici.description.peerReview | peer-review | es |
sedici.relation.journalTitle | Journal of Fourier Analysis and Applications | es |
sedici.relation.journalVolumeAndIssue | vol. 26, no. 4 | es |