Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-07-04T12:31:44Z
dc.date.available 2022-07-04T12:31:44Z
dc.date.issued 2021
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/138770
dc.description.abstract In the past decades recommender systems have become a powerful tool to improve personalization on the Web. Yet, many popular websites lack such functionality, its implementation usually requires certain technical skills, and, above all, its introduction is beyond the scope and control of end-users. To alleviate these problems, this paper presents a novel tool to empower end-users without programming skills, without any involvement of website providers, to embed personalized recommendations of items into arbitrary websites on client-side. For this we have developed a generic meta-model to capture recommender system configuration parameters in general as well as in a web augmentation context. Thereupon, we have implemented a wizard in the form of an easy-to-use browser plug-in, allowing the generation of so-called user scripts, which are executed in the browser to engage collaborative filtering functionality from a provided external rest service. We discuss functionality and limitations of the approach, and in a study with end-users we assess the usability and show its suitability for combining recommender systems with web augmentation techniques, aiming to empower end-users to implement controllable recommender applications for a more personalized browsing experience. en
dc.format.extent 6785-6809 es
dc.language en es
dc.subject Web augmentation es
dc.subject Visual programming es
dc.subject Client-side personalization es
dc.subject End-user programming es
dc.subject End-user development es
dc.subject Controllability of recommender systems es
dc.subject Browser-side trans-coding es
dc.title Engaging end-user driven recommender systems en
dc.type Articulo es
sedici.identifier.other doi:10.1007/s11042-020-09803-8 es
sedici.identifier.issn 1380-7501 es
sedici.identifier.issn 1573-7721 es
sedici.title.subtitle Personalization through web augmentation en
sedici.creator.person Wischenbart, Martin es
sedici.creator.person Firmenich, Sergio Damián es
sedici.creator.person Rossi, Gustavo Héctor es
sedici.creator.person Bosetti, Gabriela Alejandra es
sedici.creator.person Kapsammer, Elisabeth es
sedici.subject.materias Informática es
sedici.description.fulltext true es
mods.originInfo.place Laboratorio de Investigación y Formación en Informática Avanzada es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Multimedia Tools and Applications es
sedici.relation.journalVolumeAndIssue vol. 80, no. 5 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)