Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-08-08T16:54:08Z
dc.date.available 2022-08-08T16:54:08Z
dc.date.issued 2021
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/140142
dc.description.abstract In the context of COVID-19, contact tracing has shown its value as a tool for contention of the pandemic. In addition to its paper based form, contact tracing can be carried out in a more scalable and faster way by using digital apps. Mobile phones can record digital signals emitted by communication and sensing technologies, enabling the identification of risky contacts between users. Factors such as proximity, encounter duration, environment, ventilation, and the use (or not) of protective measures contribute to the probability of contagion. Estimation of these factors from the data collected by phones remains a challenge. In this work in progress we describe some of the challenges of digital contact tracing, the type of data that can be collected with mobile phones and focus particularly on the problem of proximity estimation using Bluetooth Low Energy (BLE) signals. Specifically, we use machine learning models fed with different combinations of statistical features derived from the BLE signal and study how improvements in accuracy can be obtained with respect to reference models currently in use. en
dc.format.extent 29-35 es
dc.language en es
dc.subject COVID-19 es
dc.subject Bluetooth Low Energy es
dc.subject Contact tracing es
dc.subject Proximity estimation es
dc.subject Feature selection es
dc.title Risk Estimation in COVID-19 Contact Tracing Apps en
dc.type Objeto de conferencia es
sedici.identifier.uri http://50jaiio.sadio.org.ar/pdfs/agranda/AGRANDA-07.pdf es
sedici.identifier.issn 2683-8966 es
sedici.creator.person Bellassai, Juan C. es
sedici.creator.person Madoery, Pablo G. es
sedici.creator.person Detke, Ramiro es
sedici.creator.person Blanco, Lucas es
sedici.creator.person Comerci, Sandro es
sedici.creator.person Marattin, María S. es
sedici.creator.person Fraire, Juan es
sedici.creator.person González Montoro, Aldana es
sedici.creator.person Britos,Grisel es
sedici.creator.person Ojeda, Silvia es
sedici.creator.person Finochietto, Jorge M. es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/
sedici.date.exposure 2021-10
sedici.relation.event VII Simposio Argentino de Ciencia de Datos y GRANdes DAtos (AGRANDA 2021) - JAIIO 50 (Modalidad virtual) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)