Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-08-08T17:55:30Z
dc.date.available 2022-08-08T17:55:30Z
dc.date.issued 2021
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/140157
dc.description.abstract In this work, the normative framework of active inference is integrated with belief propagation for inverting a probabilistic causal model using data generated from planned interactions between a Bayesian modeling agent and a biological system. Thompson sampling of parameter distributions is used to estimate the free energy of the expected future when beliefs about beliefs are rolled over a planning horizon. Learning a probabilistic model for maximizing biomass production in the well-known Baker’s yeast example is used as an ex-ample. The prior parameter distributions in the system model of a fed-batch cultivation are updated as new observations are obtained. Planned action sequences aim to excite the yeast metabolism by introducing changes in the feed rate of two nutrients (glucose and nitrogen). Results obtained demonstrate that by maximizing the model evidence, the proposed approach constraints biological system dynamics to relevant trajectories for improved parametric precision in the preferred region of physiological states that favor biomass productivity. en
dc.format.extent 94-107 es
dc.language en es
dc.subject Active inference es
dc.subject Bayesian inference es
dc.subject Probabil-istic modeling es
dc.subject Biological systems es
dc.subject Reinforcement learning es
dc.title Learning probabilistic models of biological systems using active inference with belief propagation en
dc.type Objeto de conferencia es
sedici.identifier.issn 2683-8966 es
sedici.creator.person Martínez, Ernesto C. es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/
sedici.date.exposure 2021-10
sedici.relation.event VII Simposio Argentino de Ciencia de Datos y GRANdes DAtos (AGRANDA 2021) - JAIIO 50 (Modalidad virtual) es
sedici.description.peerReview peer-review es
sedici.relation.bookTitle 94-107 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)