Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-08-17T15:49:38Z
dc.date.available 2022-08-17T15:49:38Z
dc.date.issued 2021
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/140595
dc.description.abstract In recent years, machine learning methods have been shown to be efficient in identifying a subset of single nucleotide polymorphisms (SNP) underlying a trait of interest. The aim of this study was the construction of predictive models using machine learning algorithms, for the identification of loci that best explain the variance in milk fat production of dairy cattle. Further objectives involve determining the genes flanking relevant SNPs and retrieving the pathways, biological processes, or molecular functions overrepresented by them. Fat production values adjusted for fixed effects (FPadj) and estimated breeding values for milk fat production (EBVFP) were used as phenotypes and SNPs as predictor variables. The models constructed for EBVFP performed better and yield considerably less relevant SNPs than models for FPadj. Among the genes flanking relevant SNPs, signaling transduction pathways and gated channel activities were detected as overrepresented. The loci obtained for EBVFP matched better with previously reported relevant loci for milk fat content than those obtained for FPadj. Based on the better performance showed by the models trained for EBVFP and their agreement with previous reported results for the trait studied, we conclude that the relationship among individuals should be accounted for in the phenotype used. en
dc.format.extent 94-103 es
dc.language en es
dc.subject Machine learning methods es
dc.subject Single nucleotide polymorphisms es
dc.subject Estimated breeding values es
dc.subject Dairy cattle es
dc.title Machine learning algorithms identified relevant SNPs for milk fat content in cattle en
dc.type Objeto de conferencia es
sedici.identifier.uri http://50jaiio.sadio.org.ar/pdfs/cai/CAI-14.pdf es
sedici.identifier.issn 2525-0949 es
sedici.creator.person Ríos, Pablo es
sedici.creator.person Raschia, María Agustina es
sedici.creator.person Maizon, Daniel O. es
sedici.creator.person Demitrio, Daniel es
sedici.creator.person Poli, Mario A. es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/
sedici.date.exposure 2021-10
sedici.relation.event XIII Congreso de AgroInformática (CAI 2021) - JAIIO 50 (Modalidad virtual) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)