Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-10-06T14:34:46Z
dc.date.available 2022-10-06T14:34:46Z
dc.date.issued 2000-03-09
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/143450
dc.description.abstract It is well known that the computation of higher order statistics, like skewness and kurtosis, (which we call C-moments) is very dependent on sample size and is highly susceptible to the presence of outliers. To obviate these difficulties, Hosking (1990) has introduced related statistics called L-moments. We have investigated the relationship of these two measures in a number of different ways. Firstly, we show that probability density functions (pdf ) that are estimated from L-moments are superior estimates to those obtained using C-moments and the principle of maximum entropy. C-moments computed from these pdf's are not however, contrary to what one may have expected, better estimates than those estimated from sample statistics. L-moment derived distributions for field data examples appear to be more consistent sample to sample than pdf 's determined by conventional means. Our observations and conclusions have a significant impact on the use of the conventional maximum entropy procedure which typically uses C-moments from actual data sets to infer probabilities. en
dc.format.extent 50-68 es
dc.language en es
dc.title L-moments and C-moments en
dc.type Articulo es
sedici.identifier.other doi:10.1007/s004770050004 es
sedici.identifier.issn 1436-3240 es
sedici.identifier.issn 1436-3259 es
sedici.creator.person Ulrych, Tadeusz J. es
sedici.creator.person Velis, Danilo Rubén es
sedici.creator.person Woodbury, Allan D. es
sedici.creator.person Sacchi, Mauricio D. es
sedici.subject.materias Ciencias Astronómicas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Astronómicas y Geofísicas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Stochastic Environmental Research and Risk Assessment es
sedici.relation.journalVolumeAndIssue vol. 14, no. 1 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)