Busque entre los 168474 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2022-10-06T14:34:46Z | |
dc.date.available | 2022-10-06T14:34:46Z | |
dc.date.issued | 2000-03-09 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/143450 | |
dc.description.abstract | It is well known that the computation of higher order statistics, like skewness and kurtosis, (which we call C-moments) is very dependent on sample size and is highly susceptible to the presence of outliers. To obviate these difficulties, Hosking (1990) has introduced related statistics called L-moments. We have investigated the relationship of these two measures in a number of different ways. Firstly, we show that probability density functions (pdf ) that are estimated from L-moments are superior estimates to those obtained using C-moments and the principle of maximum entropy. C-moments computed from these pdf's are not however, contrary to what one may have expected, better estimates than those estimated from sample statistics. L-moment derived distributions for field data examples appear to be more consistent sample to sample than pdf 's determined by conventional means. Our observations and conclusions have a significant impact on the use of the conventional maximum entropy procedure which typically uses C-moments from actual data sets to infer probabilities. | en |
dc.format.extent | 50-68 | es |
dc.language | en | es |
dc.title | L-moments and C-moments | en |
dc.type | Articulo | es |
sedici.identifier.other | doi:10.1007/s004770050004 | es |
sedici.identifier.issn | 1436-3240 | es |
sedici.identifier.issn | 1436-3259 | es |
sedici.creator.person | Ulrych, Tadeusz J. | es |
sedici.creator.person | Velis, Danilo Rubén | es |
sedici.creator.person | Woodbury, Allan D. | es |
sedici.creator.person | Sacchi, Mauricio D. | es |
sedici.subject.materias | Ciencias Astronómicas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Facultad de Ciencias Astronómicas y Geofísicas | es |
sedici.subtype | Articulo | es |
sedici.rights.license | Creative Commons Attribution 4.0 International (CC BY 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
sedici.description.peerReview | peer-review | es |
sedici.relation.journalTitle | Stochastic Environmental Research and Risk Assessment | es |
sedici.relation.journalVolumeAndIssue | vol. 14, no. 1 | es |